Finished up creating the decision tree for lists. Only constr left.

This commit is contained in:
microproofs 2024-10-16 19:07:48 -04:00
parent b340de2cfd
commit 64f7886b23
No known key found for this signature in database
GPG Key ID: 14F93C84DE6AFD17
2 changed files with 372 additions and 204 deletions

View File

@ -342,57 +342,6 @@ pub fn erase_opaque_type_operations(
}
}
/// Determine whether this air_tree node introduces any shadowing over `potential_matches`
pub fn find_introduced_variables(air_tree: &AirTree) -> Vec<String> {
match air_tree {
AirTree::Let { name, .. } => vec![name.clone()],
AirTree::SoftCastLet { name, .. } => vec![name.clone()],
AirTree::TupleGuard { indices, .. } | AirTree::TupleClause { indices, .. } => {
indices.iter().map(|(_, name)| name.clone()).collect()
}
AirTree::PairGuard {
fst_name, snd_name, ..
} => fst_name
.iter()
.cloned()
.chain(snd_name.iter().cloned())
.collect_vec(),
AirTree::PairAccessor { fst, snd, .. } => {
fst.iter().cloned().chain(snd.iter().cloned()).collect_vec()
}
AirTree::PairClause {
fst_name, snd_name, ..
} => fst_name
.iter()
.cloned()
.chain(snd_name.iter().cloned())
.collect_vec(),
AirTree::Fn { params, .. } => params.to_vec(),
AirTree::ListAccessor { names, .. } => names.clone(),
AirTree::ListExpose {
tail,
tail_head_names,
..
} => {
let mut ret = vec![];
if let Some((_, head)) = tail {
ret.push(head.clone())
}
for name in tail_head_names.iter().map(|(_, head)| head) {
ret.push(name.clone());
}
ret
}
AirTree::TupleAccessor { names, .. } => names.clone(),
AirTree::FieldsExpose { indices, .. } => {
indices.iter().map(|(_, name, _)| name.clone()).collect()
}
AirTree::When { subject_name, .. } => vec![subject_name.clone()],
_ => vec![],
}
}
/// Determine whether a function is recursive, and if so, get the arguments
pub fn is_recursive_function_call<'a>(
air_tree: &'a AirTree,

View File

@ -1,4 +1,4 @@
use std::{cmp::Ordering, rc::Rc};
use std::rc::Rc;
use itertools::{Itertools, Position};
@ -21,18 +21,18 @@ pub enum Path {
ListTail(usize),
}
#[derive(Clone, Debug)]
struct RowItem<'a> {
path: Vec<Path>,
pattern: &'a TypedPattern,
}
#[derive(Clone, Debug)]
pub struct Assigned {
path: Vec<Path>,
assigned: String,
}
#[derive(Clone, Debug)]
struct RowItem<'a> {
path: Vec<Path>,
pattern: &'a TypedPattern,
}
#[derive(Clone, Debug)]
struct Row<'a> {
assigns: Vec<Assigned>,
@ -55,28 +55,6 @@ pub enum CaseTest {
Wild,
}
impl PartialOrd for CaseTest {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
match (self, other) {
(CaseTest::Wild, CaseTest::Wild) => Some(Ordering::Equal),
(CaseTest::Wild, _) => Some(Ordering::Greater),
(_, CaseTest::Wild) => Some(Ordering::Less),
(_, _) => Some(Ordering::Equal),
}
}
}
impl Ord for CaseTest {
fn cmp(&self, other: &Self) -> Ordering {
match (self, other) {
(CaseTest::Wild, CaseTest::Wild) => Ordering::Equal,
(CaseTest::Wild, _) => Ordering::Greater,
(_, CaseTest::Wild) => Ordering::Less,
(_, _) => Ordering::Equal,
}
}
}
#[derive(Debug, Clone)]
pub enum DecisionTree<'a> {
Switch {
@ -92,11 +70,11 @@ pub enum DecisionTree<'a> {
path: Vec<Path>,
cases: Vec<(CaseTest, DecisionTree<'a>)>,
tail_cases: Vec<(CaseTest, DecisionTree<'a>)>,
default: Box<DecisionTree<'a>>,
default: Option<Box<DecisionTree<'a>>>,
},
Leaf(Vec<Assigned>, &'a TypedExpr),
HoistedLeaf(String),
HoistThen(Vec<Assigned>, &'a TypedExpr, Box<DecisionTree<'a>>),
HoistThen(String, Box<DecisionTree<'a>>, Box<DecisionTree<'a>>),
}
fn get_tipo_by_path(mut subject_tipo: Rc<Type>, mut path: &[Path]) -> Rc<Type> {
@ -215,29 +193,6 @@ fn match_wild_card(pattern: &TypedPattern) -> bool {
}
}
pub fn build_tree<'a>(
subject_name: &String,
subject_tipo: &Rc<Type>,
clauses: &'a [TypedClause],
) -> DecisionTree<'a> {
let rows = clauses
.iter()
.map(|clause| {
let (assign, row_items) = map_pattern_to_row(&clause.pattern, subject_tipo, vec![]);
Row {
assigns: assign.into_iter().collect_vec(),
columns: row_items,
then: &clause.then,
}
})
.collect_vec();
println!("INITIAL ROWS ARE {:#?}", rows);
do_build_tree(subject_name, subject_tipo, PatternMatrix { rows }, None)
}
// A function to get which column has the most pattern matches before a wild card
fn highest_occurrence(matrix: &PatternMatrix, column_length: usize) -> usize {
let occurrences = [Occurrence::default()].repeat(column_length);
@ -277,6 +232,27 @@ fn highest_occurrence(matrix: &PatternMatrix, column_length: usize) -> usize {
highest_occurrence.0
}
pub fn build_tree<'a>(
subject_name: &String,
subject_tipo: &Rc<Type>,
clauses: &'a [TypedClause],
) -> DecisionTree<'a> {
let rows = clauses
.iter()
.map(|clause| {
let (assign, row_items) = map_pattern_to_row(&clause.pattern, subject_tipo, vec![]);
Row {
assigns: assign.into_iter().collect_vec(),
columns: row_items,
then: &clause.then,
}
})
.collect_vec();
do_build_tree(subject_name, subject_tipo, PatternMatrix { rows }, None)
}
fn do_build_tree<'a>(
subject_name: &String,
subject_tipo: &Rc<Type>,
@ -292,43 +268,74 @@ fn do_build_tree<'a>(
let occurrence_col = highest_occurrence(&matrix, column_length);
let mut longest_elems = None;
let mut longest_elems_no_tail = None;
let mut longest_elems_with_tail = None;
let mut has_list_pattern = false;
matrix.rows.iter().for_each(|item| {
let col = &item.columns[occurrence_col];
match col.pattern {
Pattern::List { elements, .. } => match longest_elems {
Some(elems_count) => {
if elems_count < elements.len() {
longest_elems = Some(elements.len());
Pattern::List { elements, tail, .. } => {
has_list_pattern = true;
if tail.is_none() {
match longest_elems_no_tail {
Some(elems_count) => {
if elems_count < elements.len() {
longest_elems_no_tail = Some(elements.len());
}
}
None => {
longest_elems_no_tail = Some(elements.len());
}
}
} else {
match longest_elems_with_tail {
Some(elems_count) => {
if elems_count < elements.len() {
longest_elems_with_tail = Some(elements.len());
}
}
None => {
longest_elems_with_tail = Some(elements.len());
}
}
}
None => {
longest_elems = Some(elements.len());
}
},
}
_ => (),
}
});
let (path, mut collection_vec) = matrix.rows.into_iter().fold(
(vec![], vec![]),
|mut collection_vec: (Vec<Path>, Vec<(CaseTest, Vec<Row<'a>>)>), mut item: Row<'a>| {
if item.columns.is_empty() {
collection_vec.1.push((CaseTest::Wild, vec![item]));
return collection_vec;
let path = matrix
.rows
.get(0)
.unwrap()
.columns
.get(occurrence_col)
.map(|col| col.path.clone())
.unwrap_or(vec![]);
let mut row_iter = matrix.rows.into_iter().peekable();
let specialized_matrices = row_iter
.peeking_take_while(|row| !match_wild_card(&row.columns[occurrence_col].pattern))
.fold(vec![], |mut case_matrices, mut row| {
if row.columns.is_empty() {
case_matrices.push((CaseTest::Wild, vec![row]));
return case_matrices;
}
let col = item.columns.remove(occurrence_col);
let col = row.columns.remove(occurrence_col);
assert!(!matches!(col.pattern, Pattern::Assign { .. }));
let (mapped_args, case) = match col.pattern {
Pattern::Int { value, .. } => (vec![], CaseTest::Int(value.clone())),
Pattern::ByteArray { value, .. } => (vec![], CaseTest::Bytes(value.clone())),
Pattern::Var { .. } | Pattern::Discard { .. } => (vec![], CaseTest::Wild),
let (case, remaining_patts) = match col.pattern {
Pattern::Int { value, .. } => (CaseTest::Int(value.clone()), vec![]),
Pattern::ByteArray { value, .. } => (CaseTest::Bytes(value.clone()), vec![]),
Pattern::List { elements, tail, .. } => (
if tail.is_none() {
CaseTest::List(elements.len())
} else {
CaseTest::ListWithTail(elements.len())
},
elements
.iter()
.chain(tail.as_ref().map(|tail| tail.as_ref()))
@ -362,109 +369,246 @@ fn do_build_tree<'a>(
}
})
.collect_vec(),
if tail.is_none() {
CaseTest::List(elements.len())
} else {
CaseTest::ListWithTail(elements.len())
},
),
Pattern::Constructor { .. } => {
todo!()
}
_ => unreachable!("{:#?}", col.pattern),
Pattern::Tuple { .. }
| Pattern::Pair { .. }
| Pattern::Assign { .. }
| Pattern::Var { .. }
| Pattern::Discard { .. } => {
unreachable!("{:#?}", col.pattern)
}
};
// Assert path is matches for each row except for wild_card
assert!(
collection_vec.0.is_empty()
|| collection_vec.0 == col.path
|| matches!(case, CaseTest::Wild)
);
if collection_vec.0.is_empty() {
collection_vec.0 = col.path;
}
// Assert path is the same for each specialized row
assert!(path == col.path);
// expand assigns by newly added ones
item.assigns
.extend(mapped_args.iter().flat_map(|x| x.0.clone()));
row.assigns
.extend(remaining_patts.iter().flat_map(|x| x.0.clone()));
// Add inner patterns to existing row
item.columns
.extend(mapped_args.into_iter().flat_map(|x| x.1));
row.columns
.extend(remaining_patts.into_iter().flat_map(|x| x.1));
// TODO: Handle special casetest of ListWithTail
if let Some(entry) = collection_vec.1.iter_mut().find(|item| item.0 == case) {
entry.1.push(item);
collection_vec
// For lists with tail it's a special case where we also add it to existing patterns
// all the way to the longest element. The reason being that each list size greater
// than the list with tail could also match with could also match depending on the inner pattern.
// See tests below for an example
if let CaseTest::ListWithTail(elems_len) = case {
if let Some(longest_elems_no_tail) = longest_elems_no_tail {
for elem_count in elems_len..=longest_elems_no_tail {
let case = CaseTest::List(elem_count);
let mut row = row.clone();
let tail = row.columns.pop().unwrap();
let columns_to_fill = (0..(elem_count - elems_len))
.map(|_| tail.clone())
.collect_vec();
row.columns.extend(columns_to_fill);
if let Some(entry) = case_matrices.iter_mut().find(|item| item.0 == case) {
entry.1.push(row);
} else {
case_matrices.push((case, vec![row]));
}
}
}
let Some(longest_elems_with_tail) = longest_elems_with_tail else {
unreachable!()
};
for elem_count in elems_len..=longest_elems_with_tail {
let case = CaseTest::ListWithTail(elem_count);
let mut row = row.clone();
let tail = row.columns.pop().unwrap();
let columns_to_fill = (0..(elem_count - elems_len))
.map(|_| tail.clone())
.collect_vec();
row.columns.extend(columns_to_fill);
if let Some(entry) = case_matrices.iter_mut().find(|item| item.0 == case) {
entry.1.push(row);
} else {
case_matrices.push((case, vec![row]));
}
}
} else {
collection_vec.1.push((case, vec![item]));
collection_vec
if let Some(entry) = case_matrices.iter_mut().find(|item| item.0 == case) {
entry.1.push(row);
} else {
case_matrices.push((case, vec![row]));
}
}
},
);
collection_vec.sort_by(|a, b| a.0.cmp(&b.0));
case_matrices
});
let mut collection_iter = collection_vec.into_iter().peekable();
let default_matrix = PatternMatrix {
rows: row_iter.collect_vec(),
};
let cases = collection_iter
.peeking_take_while(|a| !matches!(a.0, CaseTest::Wild))
.collect_vec();
if has_list_pattern {
// Since the list_tail case might cover the rest of the possible matches extensively
// then fallback is optional here
let fallback_option = if default_matrix.rows.is_empty() {
fallback_option
} else {
Some(do_build_tree(
subject_name,
subject_tipo,
// Since everything after this point had a wild card on or above
// the row for the selected column in front. Then we ignore the
// cases and continue to check other columns.
default_matrix,
fallback_option,
))
};
if cases.is_empty() {
let mut fallback = collection_iter.collect_vec();
let (tail_cases, cases): (Vec<_>, Vec<_>) = specialized_matrices
.into_iter()
.partition(|(case, _)| matches!(case, CaseTest::ListWithTail(_)));
assert!(fallback.len() == 1);
// TODO: pass in interner and use unique string
let hoisted_name = "HoistedThing".to_string();
let mut remaining = fallback.swap_remove(0).1;
if let Some(fallback) = fallback_option {
DecisionTree::HoistThen(
hoisted_name.clone(),
fallback.into(),
DecisionTree::ListSwitch {
subject_name: subject_name.clone(),
subject_tipo: get_tipo_by_path(subject_tipo.clone(), &path),
path,
cases: cases
.into_iter()
.map(|x| {
(
x.0,
do_build_tree(
subject_name,
subject_tipo,
PatternMatrix { rows: x.1 },
Some(DecisionTree::HoistedLeaf(hoisted_name.clone())),
),
)
})
.collect_vec(),
tail_cases: tail_cases
.into_iter()
.map(|x| {
(
x.0,
do_build_tree(
subject_name,
subject_tipo,
PatternMatrix { rows: x.1 },
Some(DecisionTree::HoistedLeaf(hoisted_name.clone())),
),
)
})
.collect_vec(),
default: Some(DecisionTree::HoistedLeaf(hoisted_name).into()),
}
.into(),
)
} else {
DecisionTree::ListSwitch {
subject_name: subject_name.clone(),
subject_tipo: get_tipo_by_path(subject_tipo.clone(), &path),
path,
cases: cases
.into_iter()
.map(|x| {
(
x.0,
do_build_tree(
subject_name,
subject_tipo,
PatternMatrix { rows: x.1 },
None,
),
)
})
.collect_vec(),
tail_cases: tail_cases
.into_iter()
.map(|x| {
(
x.0,
do_build_tree(
subject_name,
subject_tipo,
PatternMatrix { rows: x.1 },
None,
),
)
})
.collect_vec(),
default: None,
}
}
} else if specialized_matrices.is_empty() {
// No more patterns to match on so we grab the first default row and return that
let mut fallback = default_matrix.rows;
assert!(remaining.len() == 1);
let row = remaining.swap_remove(0);
let row = fallback.swap_remove(0);
DecisionTree::Leaf(row.assigns, row.then)
} else {
let mut fallback = collection_iter
.map(|x| {
do_build_tree(
subject_name,
subject_tipo,
PatternMatrix { rows: x.1 },
None,
)
})
.collect_vec();
assert!(fallback.len() == 1 || fallback_option.is_some());
let fallback = if !fallback.is_empty() {
fallback.swap_remove(0)
} else {
let fallback = if default_matrix.rows.is_empty() {
fallback_option.unwrap()
} else {
do_build_tree(
subject_name,
subject_tipo,
// Since everything after this point had a wild card on or above
// the row for the selected column in front. Then we ignore the
// cases and continue to check other columns.
default_matrix,
fallback_option,
)
};
DecisionTree::Switch {
subject_name: subject_name.clone(),
subject_tipo: get_tipo_by_path(subject_tipo.clone(), &path),
path,
cases: cases
.into_iter()
.map(|x| {
(
x.0,
do_build_tree(
subject_name,
subject_tipo,
PatternMatrix { rows: x.1 },
Some(fallback.clone()),
),
)
})
.collect_vec(),
default: fallback.into(),
}
// TODO: pass in interner and use unique string
let hoisted_name = "HoistedThing".to_string();
DecisionTree::HoistThen(
hoisted_name.clone(),
fallback.into(),
DecisionTree::Switch {
subject_name: subject_name.clone(),
subject_tipo: get_tipo_by_path(subject_tipo.clone(), &path),
path,
cases: specialized_matrices
.into_iter()
.map(|x| {
(
x.0,
do_build_tree(
subject_name,
subject_tipo,
PatternMatrix { rows: x.1 },
Some(DecisionTree::HoistedLeaf(hoisted_name.clone())),
),
)
})
.collect_vec(),
default: DecisionTree::HoistedLeaf(hoisted_name).into(),
}
.into(),
)
}
}
@ -600,7 +744,82 @@ mod tester {
);
println!("TREE IS {:#?}", tree);
}
panic!()
#[test]
fn thing3() {
let source_code = r#"
test thing(){
when (1,2,#"",[]) is {
(2,b,#"", []) -> 4 == 4
(a,b,#"", [2, ..y]) -> True
(1,b,#"", [a]) -> False
(3,b,#"aa", [x, y, ..z]) -> 2 == 2
_ -> 1 == 1
}
}
"#;
let (_, ast) = check(parse(source_code)).unwrap();
let Definition::Test(function) = &ast.definitions[0] else {
panic!()
};
let TypedExpr::When { clauses, .. } = &function.body else {
panic!()
};
let tree = build_tree(
&"subject".to_string(),
&Type::tuple(vec![
Type::int(),
Type::int(),
Type::byte_array(),
Type::list(Type::int()),
]),
clauses,
);
println!("TREE IS {:#?}", tree);
}
#[test]
fn thing4() {
let source_code = r#"
test thing(){
when (1,2,#"",[]) is {
(2,b,#"", []) -> 4 == 4
(a,b,#"", [2, ..y]) -> True
(1,b,#"", [a]) -> False
(3,b,#"aa", [x, y, ..z]) -> 2 == 2
(3,b, c, [x, 3]) -> fail
_ -> 1 == 1
}
}
"#;
let (_, ast) = check(parse(source_code)).unwrap();
let Definition::Test(function) = &ast.definitions[0] else {
panic!()
};
let TypedExpr::When { clauses, .. } = &function.body else {
panic!()
};
let tree = build_tree(
&"subject".to_string(),
&Type::tuple(vec![
Type::int(),
Type::int(),
Type::byte_array(),
Type::list(Type::int()),
]),
clauses,
);
println!("TREE IS {:#?}", tree);
}
}