Merge pull request #421 from aiken-lang/monomorph-panic-fix

Functions with only a generic return weren't being properly monomorph…
This commit is contained in:
Matthias Benkort 2023-03-08 11:39:50 +01:00 committed by GitHub
commit d8934b3d8d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 333 additions and 16 deletions

View File

@ -1200,7 +1200,7 @@ pub fn find_and_replace_generics(tipo: &mut Arc<Type>, mono_types: &IndexMap<u64
}
}
pub fn get_generics_and_type(tipo: &Type, param: &Type) -> Vec<(u64, Arc<Type>)> {
pub fn get_generic_id_and_type(tipo: &Type, param: &Type) -> Vec<(u64, Arc<Type>)> {
let mut generics_ids = vec![];
if let Some(id) = tipo.get_generic() {
@ -1213,7 +1213,7 @@ pub fn get_generics_and_type(tipo: &Type, param: &Type) -> Vec<(u64, Arc<Type>)>
.iter()
.zip(param.get_inner_types().iter())
{
generics_ids.append(&mut get_generics_and_type(tipo, param_type));
generics_ids.append(&mut get_generic_id_and_type(tipo, param_type));
}
generics_ids
}
@ -1990,7 +1990,7 @@ pub fn replace_opaque_type(t: &mut Arc<Type>, data_types: IndexMap<DataTypeKey,
for (tipo, param) in new_type_fields.iter().zip(t.arg_types().unwrap()) {
let mut map = mono_types.into_iter().collect_vec();
map.append(&mut get_generics_and_type(tipo, &param));
map.append(&mut get_generic_id_and_type(tipo, &param));
mono_types = map.into_iter().collect();
}

View File

@ -26,7 +26,7 @@ use crate::{
builder::{
check_replaceable_opaque_type, check_when_pattern_needs, constants_ir,
convert_constants_to_data, convert_data_to_type, convert_type_to_data, get_common_ancestor,
get_generics_and_type, handle_clause_guard, handle_func_dependencies_ir,
get_generic_id_and_type, handle_clause_guard, handle_func_dependencies_ir,
handle_recursion_ir, list_access_to_uplc, lookup_data_type_by_tipo, monomorphize,
rearrange_clauses, replace_opaque_type, wrap_validator_args, AssignmentProperties,
ClauseProperties, DataTypeKey, FuncComponents, FunctionAccessKey,
@ -3275,18 +3275,24 @@ impl<'a> CodeGenerator<'a> {
let param_types = constructor.tipo.arg_types().unwrap();
let mut mono_types: IndexMap<u64, Arc<Type>> = IndexMap::new();
let mut map = mono_types.into_iter().collect_vec();
for (index, arg) in function.arguments.iter().enumerate() {
if arg.tipo.is_generic() {
let mut map = mono_types.into_iter().collect_vec();
let param_type = &param_types[index];
map.append(&mut get_generics_and_type(&arg.tipo, param_type));
mono_types = map.into_iter().collect();
map.append(&mut get_generic_id_and_type(&arg.tipo, param_type));
}
}
if function.return_type.is_generic() {
if let Type::Fn { ret, .. } = &*constructor.tipo {
map.append(&mut get_generic_id_and_type(&function.return_type, ret))
}
}
mono_types = map.into_iter().collect();
let (variant_name, func_ir) =
monomorphize(func_ir, mono_types, &constructor.tipo);
@ -3347,23 +3353,32 @@ impl<'a> CodeGenerator<'a> {
} else if let (Some(function), Type::Fn { .. }) =
(function, &*tipo)
{
let param_types = tipo.arg_types().unwrap();
let mut mono_types: IndexMap<u64, Arc<Type>> =
IndexMap::new();
let param_types = tipo.arg_types().unwrap();
let mut map = mono_types.into_iter().collect_vec();
for (index, arg) in function.arguments.iter().enumerate() {
if arg.tipo.is_generic() {
let mut map = mono_types.into_iter().collect_vec();
map.append(&mut get_generics_and_type(
&arg.tipo,
&param_types[index],
));
let param_type = &param_types[index];
mono_types = map.into_iter().collect();
map.append(&mut get_generic_id_and_type(
&arg.tipo, param_type,
));
}
}
if function.return_type.is_generic() {
if let Type::Fn { ret, .. } = &*constructor.tipo {
map.append(&mut get_generic_id_and_type(
&function.return_type,
ret,
))
}
}
mono_types = map.into_iter().collect();
let mut func_ir = vec![];
self.build_ir(&function.body, &mut func_ir, scope.to_vec());

View File

@ -0,0 +1,13 @@
# This file was generated by Aiken
# You typically do not need to edit this file
[[requirements]]
name = "aiken-lang/stdlib"
version = "main"
source = "github"
[[packages]]
name = "aiken-lang/stdlib"
version = "main"
requirements = []
source = "github"

View File

@ -0,0 +1,7 @@
name = "aiken-lang/acceptance_test_074"
version = "0.0.0"
[[dependencies]]
name = 'aiken-lang/stdlib'
version = 'main'
source = 'github'

View File

@ -0,0 +1,282 @@
use aiken/bytearray.{from_string}
use aiken/hash.{Hash, Sha2_256, sha2_256}
use aiken/list
use aiken/option.{choice, is_none}
/// Variant of MerkleTree with only hash but without actual value
pub type MerkleTree<a> {
Empty
Leaf { hash: Hash<Sha2_256, ByteArray> }
Node {
hash: Hash<Sha2_256, ByteArray>,
left: MerkleTree<a>,
right: MerkleTree<a>,
}
}
pub type Proof =
List<ProofItem>
pub type ProofItem {
Left { hash: Hash<Sha2_256, ByteArray> }
Right { hash: Hash<Sha2_256, ByteArray> }
}
// Function returning a hash of a given Merkle Tree element
pub fn root_hash(self: MerkleTree<a>) -> Hash<Sha2_256, ByteArray> {
when self is {
Empty -> #""
Leaf { hash } -> hash
Node { hash, .. } -> hash
}
}
/// Function atests whether two Merkle Tress are equal, this is the case when their root hashes match.
pub fn is_equal(left: MerkleTree<a>, right: MerkleTree<a>) -> Bool {
root_hash(left) == root_hash(right)
}
/// Function returns a total numbers of leaves in the tree.
pub fn size(self: MerkleTree<a>) -> Int {
when self is {
Empty -> 0
Leaf{..} -> 1
Node { left, right, .. } -> size(left) + size(right)
}
}
fn combine_hash(
left: Hash<Sha2_256, a>,
right: Hash<Sha2_256, a>,
) -> Hash<Sha2_256, a> {
sha2_256(bytearray.concat(left, right))
}
/// Function that returns whether merkle tree has any elements
pub fn is_empty(self: MerkleTree<a>) -> Bool {
when self is {
Empty -> True
_ -> False
}
}
fn do_proof(
self: MerkleTree<a>,
item_hash: Hash<Sha2_256, ByteArray>,
proof: Proof,
serialise_fn: fn(a) -> ByteArray,
) -> Option<Proof> {
when self is {
Empty -> None
Leaf { hash } ->
if hash == item_hash {
Some(proof)
} else {
None
}
Node { left, right, .. } -> {
let rh = root_hash(right)
let lh = root_hash(left)
let go_left: Option<Proof> =
do_proof(
left,
item_hash,
list.push(proof, Right { hash: rh }),
serialise_fn,
)
let go_right: Option<Proof> =
do_proof(
right,
item_hash,
list.push(proof, Left { hash: lh }),
serialise_fn,
)
choice([go_left, go_right])
}
}
}
/// Construct a membership 'Proof' from an element and a 'MerkleTree'. Returns
/// 'None' if the element isn't a member of the tree to begin with.
/// Note function will return Some([]) in case root of the tree is also it's only one and only element
pub fn get_proof(
self: MerkleTree<a>,
item: a,
serialise_fn: fn(a) -> ByteArray,
) -> Option<Proof> {
let empty: Proof = []
do_proof(self, sha2_256(serialise_fn(item)), empty, serialise_fn)
}
fn do_from_list(
items: List<a>,
len: Int,
serialise_fn: fn(a) -> ByteArray,
) -> MerkleTree<a> {
when items is {
[] -> Empty
[item] -> {
let hashed_item = sha2_256(serialise_fn(item))
Leaf { hash: hashed_item }
}
all -> {
let cutoff: Int = len / 2
let left =
all
|> list.take(cutoff)
|> do_from_list(cutoff, serialise_fn)
let right =
all
|> list.drop(cutoff)
|> do_from_list(len - cutoff, serialise_fn)
let hash = combine_hash(root_hash(left), root_hash(right))
Node { hash, left, right }
}
}
}
/// Construct a 'MerkleTree' from a list of elements.
/// Note that, while this operation is doable on-chain, it is expensive and
/// preferably done off-chain.
pub fn from_list(
items: List<a>,
serialise_fn: fn(a) -> ByteArray,
) -> MerkleTree<a> {
do_from_list(items, list.length(items), serialise_fn)
}
fn do_from_hashes_list(
items: List<Hash<Sha2_256, a>>,
len: Int,
) -> MerkleTree<a> {
when items is {
[] -> Empty
[hashed_item] -> Leaf { hash: hashed_item }
all -> {
let cutoff: Int = len / 2
let left =
all
|> list.take(cutoff)
|> do_from_hashes_list(cutoff)
let right =
all
|> list.drop(cutoff)
|> do_from_hashes_list(len - cutoff)
let hash = combine_hash(root_hash(left), root_hash(right))
Node { hash, left, right }
}
}
}
/// Construct a 'MerkleTree' from a list of hashes.
/// Note that, while this operation is doable on-chain, it is expensive and
/// preferably done off-chain.
pub fn from_hashes_list(items: List<Hash<Sha2_256, a>>) -> MerkleTree<a> {
do_from_hashes_list(items, list.length(items))
}
// Check whether a hashed element is part of a 'MerkleTree' using only its root hash
// and a 'Proof'. The proof is guaranteed to be in log(n) of the size of the
// tree, which is why we are interested in such data-structure in the first
// place.
pub fn member_from_hash(
item_hash: Hash<Sha2_256, a>,
root_hash: Hash<Sha2_256, a>,
proof: Proof,
serialise_fn: fn(a) -> ByteArray,
) -> Bool {
when proof is {
[] -> root_hash == item_hash
[head, ..tail] ->
when head is {
Left { hash: l } ->
member_from_hash(
combine_hash(l, item_hash),
root_hash,
tail,
serialise_fn,
)
Right { hash: r } ->
member_from_hash(
combine_hash(item_hash, r),
root_hash,
tail,
serialise_fn,
)
}
}
}
// Check whether an element is part of a 'MerkleTree' using only its root hash
// and a 'Proof'.
pub fn member(
item: a,
root_hash: Hash<Sha2_256, ByteArray>,
proof: Proof,
serialise_fn: fn(a) -> ByteArray,
) -> Bool {
let item_hash = sha2_256(serialise_fn(item))
member_from_hash(item_hash, root_hash, proof, serialise_fn)
}
pub fn member_from_tree(
tree: MerkleTree<a>,
item: a,
serialise_fn: fn(a) -> ByteArray,
) -> Bool {
let proof: Option<Proof> = get_proof(tree, item, serialise_fn)
let rh = root_hash(tree)
when proof is {
Some(p) -> member(item, rh, p, serialise_fn)
None -> False
}
}
// needed only for tests
fn create_string_item_serialise_fn() -> fn(String) -> ByteArray {
fn(x: String) { from_string(x) }
}
test from_hashes_list_5() {
let dog = @"dog"
let cat = @"cat"
let mouse = @"mouse"
let horse = @"horse"
let serialise_fn = create_string_item_serialise_fn()
let items = [dog, cat, mouse, horse]
let hashes_items = list.map(items, fn(item) { sha2_256(serialise_fn(item)) })
let mt = from_hashes_list(hashes_items)
let left_node_hash =
sha2_256(
bytearray.concat(sha2_256(serialise_fn(dog)), sha2_256(serialise_fn(cat))),
)
let right_node_hash =
sha2_256(
bytearray.concat(
sha2_256(serialise_fn(mouse)),
sha2_256(serialise_fn(horse)),
),
)
let root_hash = sha2_256(bytearray.concat(left_node_hash, right_node_hash))
Node {
hash: root_hash,
left: Node {
hash: left_node_hash,
left: Leaf { hash: sha2_256(serialise_fn(dog)) },
right: Leaf { hash: sha2_256(serialise_fn(cat)) },
},
right: Node {
hash: right_node_hash,
left: Leaf { hash: sha2_256(serialise_fn(mouse)) },
right: Leaf { hash: sha2_256(serialise_fn(horse)) },
},
} == mt
}