Rework monadic-bind into function backpassing.

This is more holistic and less awkward than having monadic bind working only with some pre-defined type. Backpassing work with _any_ function, and can be implemented relatively easily by rewriting the AST on-the-fly.

  Also, it is far easier to explain than trying to explain what a monadic bind is, how its behavior differs from type to type and why it isn't generally available for any monadic type.
This commit is contained in:
KtorZ 2024-03-10 14:05:56 +01:00
parent 1f530f3b24
commit df898bf239
No known key found for this signature in database
GPG Key ID: 33173CB6F77F4277
6 changed files with 331 additions and 97 deletions

View File

@ -19,6 +19,7 @@
- **aiken-lang**: Strings can contain a nul byte using the escape sequence `\0`. @KtorZ
- **aiken**: The `check` command now accept an extra (optional) option `--max-success` to control the number of property-test iterations to perform. @KtorZ
- **aiken**: The `docs` command now accept an optional flag `--include-dependencies` to include all dependencies in the generated documentation. @KtorZ
- **aiken-lang**: Implement [function backpassing](https://www.roc-lang.org/tutorial#backpassing) as a syntactic sugar. @KtorZ
### Fixed

View File

@ -16,6 +16,7 @@ use std::{
use uplc::machine::runtime::Compressable;
use vec1::Vec1;
pub const BACKPASS_VARIABLE: &str = "_backpass";
pub const CAPTURE_VARIABLE: &str = "_capture";
pub const PIPE_VARIABLE: &str = "_pipe";
@ -792,6 +793,19 @@ impl<A> Arg<A> {
self.arg_name.get_variable_name()
}
pub fn is_capture(&self) -> bool {
if let ArgName::Named {
ref name, location, ..
} = self.arg_name
{
return name.starts_with(CAPTURE_VARIABLE)
&& location == Span::empty()
&& self.location == Span::empty();
}
false
}
pub fn put_doc(&mut self, new_doc: String) {
self.doc = Some(new_doc);
}

View File

@ -1,10 +1,10 @@
use crate::{
ast::{
self, Annotation, Arg, AssignmentKind, BinOp, Bls12_381Point, ByteArrayFormatPreference,
CallArg, Curve, DataType, DataTypeKey, DefinitionLocation, IfBranch, Located,
LogicalOpChainKind, ParsedCallArg, Pattern, RecordConstructorArg, RecordUpdateSpread, Span,
TraceKind, TypedClause, TypedDataType, TypedRecordUpdateArg, UnOp, UntypedClause,
UntypedRecordUpdateArg,
self, Annotation, Arg, ArgName, AssignmentKind, BinOp, Bls12_381Point,
ByteArrayFormatPreference, CallArg, Curve, DataType, DataTypeKey, DefinitionLocation,
IfBranch, Located, LogicalOpChainKind, ParsedCallArg, Pattern, RecordConstructorArg,
RecordUpdateSpread, Span, TraceKind, TypedClause, TypedDataType, TypedRecordUpdateArg,
UnOp, UntypedClause, UntypedRecordUpdateArg,
},
builtins::void,
parser::token::Base,
@ -1299,4 +1299,29 @@ impl UntypedExpr {
Self::String { .. } | Self::UInt { .. } | Self::ByteArray { .. }
)
}
pub fn lambda(name: String, expressions: Vec<UntypedExpr>, location: Span) -> Self {
Self::Fn {
location,
fn_style: FnStyle::Plain,
arguments: vec![Arg {
location,
doc: None,
annotation: None,
tipo: (),
arg_name: ArgName::Named {
label: name.clone(),
name,
location,
is_validator_param: false,
},
}],
body: Self::Sequence {
location,
expressions,
}
.into(),
return_annotation: None,
}
}
}

View File

@ -1844,7 +1844,11 @@ impl<'a> Documentable<'a> for &'a ArgName {
}
fn pub_(public: bool) -> Document<'static> {
if public { "pub ".to_doc() } else { nil() }
if public {
"pub ".to_doc()
} else {
nil()
}
}
impl<'a> Documentable<'a> for &'a UnqualifiedImport {

View File

@ -1185,6 +1185,141 @@ fn trace_if_false_ok() {
assert!(check(parse(source_code)).is_ok())
}
#[test]
fn backpassing_basic() {
let source_code = r#"
fn and_then(opt: Option<a>, then: fn(a) -> Option<b>) -> Option<b> {
when opt is {
None -> None
Some(a) -> then(a)
}
}
fn backpassing(opt_i: Option<Int>, opt_j: Option<Int>) -> Option<Int> {
let i <- and_then(opt_i)
let j <- and_then(opt_j)
Some(i + j)
}
"#;
assert!(check(parse(source_code)).is_ok())
}
#[test]
fn backpassing_interleaved_capture() {
let source_code = r#"
fn and_then(opt: Option<a>, then: fn(a) -> Option<b>) -> Option<b> {
when opt is {
None -> None
Some(a) -> then(a)
}
}
fn backpassing(opt_i: Option<Int>, opt_j: Option<Int>) -> Option<Int> {
let f = and_then(opt_i, _)
let i <- f
let g = and_then(opt_j, _)
let j <- g
Some(i + j)
}
"#;
assert!(check(parse(source_code)).is_ok())
}
#[test]
fn backpassing_patterns() {
let source_code = r#"
fn and_then(opt: Option<a>, then: fn(a) -> Option<b>) -> Option<b> {
when opt is {
None -> None
Some(a) -> then(a)
}
}
type Foo {
foo: Int,
}
fn backpassing(opt_i: Option<Foo>, opt_j: Option<Foo>) -> Option<Int> {
let Foo { foo: i } <- and_then(opt_i)
let Foo { foo: j } <- and_then(opt_j)
Some(i + j)
}
"#;
assert!(check(parse(source_code)).is_ok())
}
#[test]
fn backpassing_not_a_function() {
let source_code = r#"
fn and_then(opt: Option<a>, then: fn(a) -> Option<b>) -> Option<b> {
when opt is {
None -> None
Some(a) -> then(a)
}
}
fn backpassing(opt_i: Option<Int>, opt_j: Option<Int>) -> Option<Int> {
let i <- opt_i
let j <- and_then(opt_j)
Some(i + j)
}
"#;
assert!(matches!(
check(parse(source_code)),
Err((_, Error::NotFn { .. }))
))
}
#[test]
fn backpassing_non_exhaustive_pattern() {
let source_code = r#"
fn and_then(opt: Option<a>, then: fn(a) -> Option<b>) -> Option<b> {
when opt is {
None -> None
Some(a) -> then(a)
}
}
fn backpassing(opt_i: Option<Int>, opt_j: Option<Int>) -> Option<Int> {
let 42 <- and_then(opt_i)
let j <- and_then(opt_j)
Some(i + j)
}
"#;
assert!(matches!(
check(parse(source_code)),
Err((_, Error::NotExhaustivePatternMatch { .. }))
))
}
#[test]
fn backpassing_unsaturated_fn() {
let source_code = r#"
fn and_then(opt: Option<a>, then: fn(a) -> Option<b>) -> Option<b> {
when opt is {
None -> None
Some(a) -> then(a)
}
}
fn backpassing(opt_i: Option<Int>, opt_j: Option<Int>) -> Option<Int> {
let i <- and_then
let j <- and_then(opt_j)
Some(i + j)
}
"#;
assert!(matches!(
check(parse(source_code)),
Err((_, Error::IncorrectFieldsArity { .. }))
))
}
#[test]
fn trace_if_false_ko() {
let source_code = r#"

View File

@ -8,12 +8,12 @@ use super::{
};
use crate::{
ast::{
Annotation, Arg, ArgName, AssignmentKind, BinOp, Bls12_381Point, ByteArrayFormatPreference,
CallArg, ClauseGuard, Constant, Curve, IfBranch, LogicalOpChainKind, Pattern,
RecordUpdateSpread, Span, TraceKind, TraceLevel, Tracing, TypedArg, TypedCallArg,
TypedClause, TypedClauseGuard, TypedIfBranch, TypedPattern, TypedRecordUpdateArg, UnOp,
UntypedArg, UntypedClause, UntypedClauseGuard, UntypedIfBranch, UntypedPattern,
UntypedRecordUpdateArg,
self, Annotation, Arg, ArgName, AssignmentKind, BinOp, Bls12_381Point,
ByteArrayFormatPreference, CallArg, ClauseGuard, Constant, Curve, IfBranch,
LogicalOpChainKind, Pattern, RecordUpdateSpread, Span, TraceKind, TraceLevel, Tracing,
TypedArg, TypedCallArg, TypedClause, TypedClauseGuard, TypedIfBranch, TypedPattern,
TypedRecordUpdateArg, UnOp, UntypedArg, UntypedClause, UntypedClauseGuard, UntypedIfBranch,
UntypedPattern, UntypedRecordUpdateArg,
},
builtins::{
bool, byte_array, function, g1_element, g2_element, int, list, string, tuple, void,
@ -24,7 +24,7 @@ use crate::{
tipo::{fields::FieldMap, PatternConstructor, TypeVar},
};
use std::{cmp::Ordering, collections::HashMap, ops::Deref, rc::Rc};
use vec1::{vec1, Vec1};
use vec1::Vec1;
#[derive(Debug)]
pub(crate) struct ExprTyper<'a, 'b> {
@ -1711,27 +1711,150 @@ impl<'a, 'b> ExprTyper<'a, 'b> {
PipeTyper::infer(self, expressions)
}
fn infer_seq(&mut self, location: Span, untyped: Vec<UntypedExpr>) -> Result<TypedExpr, Error> {
let mut breakpoint = None;
fn backpass(&mut self, breakpoint: UntypedExpr, continuation: Vec<UntypedExpr>) -> UntypedExpr {
let (assign_location, value, pattern, annotation) = match breakpoint {
UntypedExpr::Assignment {
location,
value,
pattern,
annotation,
..
} => (location, value, pattern, annotation),
_ => unreachable!("backpass misuse: breakpoint isn't an Assignment ?!"),
};
let mut sequence = self.in_new_scope(|scope| {
let count = untyped.len();
// In case where we have a Pattern that isn't simply a let-binding to a name, we do insert an extra let-binding
// in front of the continuation sequence. This is because we do not support patterns in function argument
// (which is perhaps something we should support?).
let (name, continuation) = match pattern {
Pattern::Var { name, .. } | Pattern::Discard { name, .. } => {
(name.clone(), continuation)
}
_ => {
let mut with_assignment = vec![UntypedExpr::Assignment {
location: assign_location,
value: UntypedExpr::Var {
location: assign_location,
name: ast::BACKPASS_VARIABLE.to_string(),
}
.into(),
pattern,
kind: AssignmentKind::Let,
annotation,
}];
with_assignment.extend(continuation);
(ast::BACKPASS_VARIABLE.to_string(), with_assignment)
}
};
match *value {
UntypedExpr::Call {
location: call_location,
fun,
arguments,
} => {
let mut new_arguments = Vec::new();
new_arguments.extend(arguments);
new_arguments.push(CallArg {
location: assign_location,
label: None,
value: UntypedExpr::lambda(name, continuation, call_location),
});
UntypedExpr::Call {
location: call_location,
fun,
arguments: new_arguments,
}
}
// This typically occurs on function captures. We do not try to assert anything on the
// length of the arguments here. We defer that to the rest of the type-checker. The
// only thing we have to do is rewrite the AST as-if someone had passed a callback.
//
// Now, whether this leads to an invalid call usage, that's not *our* immediate
// problem.
UntypedExpr::Fn {
location: call_location,
fn_style,
ref arguments,
ref return_annotation,
..
} => {
let return_annotation = return_annotation.clone();
let arguments = arguments.iter().skip(1).cloned().collect::<Vec<_>>();
let call = UntypedExpr::Call {
location: call_location,
fun: value,
arguments: vec![CallArg {
location: assign_location,
label: None,
value: UntypedExpr::lambda(name, continuation, call_location),
}],
};
if arguments.is_empty() {
call
} else {
UntypedExpr::Fn {
location: call_location,
fn_style,
arguments,
body: call.into(),
return_annotation,
}
}
}
// Similarly to function captures, if we have any other expression we simply call it
// with our continuation. If the expression isn't callable? No problem, the
// type-checker will catch that eventually in exactly the same way as if the code was
// written like that to begin with.
_ => UntypedExpr::Call {
location: assign_location,
fun: value,
arguments: vec![CallArg {
location: assign_location,
label: None,
value: UntypedExpr::lambda(name, continuation, assign_location),
}],
},
}
}
fn infer_seq(&mut self, location: Span, untyped: Vec<UntypedExpr>) -> Result<TypedExpr, Error> {
// Search for backpassing.
let mut breakpoint = None;
let mut prefix = Vec::with_capacity(untyped.len());
let mut suffix = Vec::with_capacity(untyped.len());
for expression in untyped.into_iter() {
match expression {
_ if breakpoint.is_some() => suffix.push(expression),
UntypedExpr::Assignment {
kind: AssignmentKind::Bind,
..
} => {
breakpoint = Some(expression);
}
_ => prefix.push(expression),
}
}
if let Some(breakpoint) = breakpoint {
prefix.push(self.backpass(breakpoint, suffix));
return self.infer_seq(location, prefix);
}
let sequence = self.in_new_scope(|scope| {
let count = prefix.len();
let mut expressions = Vec::with_capacity(count);
for (i, expression) in untyped.iter().enumerate() {
let no_assignment = assert_no_assignment(expression);
for (i, expression) in prefix.into_iter().enumerate() {
let no_assignment = assert_no_assignment(&expression);
let typed_expression = match expression {
UntypedExpr::Assignment {
kind: AssignmentKind::Bind,
..
} => {
breakpoint = Some((i, expression.clone()));
return Ok(expressions);
}
_ => scope.infer(expression.to_owned())?,
};
let typed_expression = scope.infer(expression)?;
expressions.push(match i.cmp(&(count - 1)) {
// When the expression is the last in a sequence, we enforce it is NOT
@ -1753,74 +1876,6 @@ impl<'a, 'b> ExprTyper<'a, 'b> {
Ok(expressions)
})?;
if let Some((
i,
UntypedExpr::Assignment {
location,
value,
pattern,
..
},
)) = breakpoint
{
let then = UntypedExpr::Sequence {
location,
expressions: untyped.into_iter().skip(i + 1).collect::<Vec<_>>(),
};
// TODO: This must be constructed based on the inferred type of *value*.
//
// let tipo = self.infer(untyped_value.clone())?.tipo();
//
// The following is the `and_then` for Option. The one for Fuzzer is a bit
// different.
let desugar = UntypedExpr::When {
location,
subject: value.clone(),
clauses: vec![
UntypedClause {
location,
guard: None,
patterns: vec1![Pattern::Constructor {
location,
is_record: false,
with_spread: false,
name: "None".to_string(),
module: None,
constructor: (),
tipo: (),
arguments: vec![],
}],
then: UntypedExpr::Var {
location,
name: "None".to_string(),
},
},
UntypedClause {
location,
guard: None,
patterns: vec1![Pattern::Constructor {
location,
is_record: false,
with_spread: false,
name: "Some".to_string(),
module: None,
constructor: (),
tipo: (),
arguments: vec![CallArg {
location,
label: None,
value: pattern.clone(),
}],
}],
then,
},
],
};
sequence.push(self.infer(desugar)?);
};
let unused = self
.environment
.warnings