For the program to be consistent, the 'EventListener' target that we
pass to a Project should be responsible for the output format.
Otherwise, we are contingent on developers to remember passing the
option at call-site. Plus, it overloads the project code with an extra
boolean option.
Instead, since the behaviour is solely driven by the execution
context, we can instantiate a different event target upfront, and
simply hold on to it throughout the program.
As a nice side-effect, we can gently re-organize the code to keep the
terminal printing logic and the json printing logic separate.
Avoid the interface to hang for several seconds without feedback when counterexamples are being simplified. This sends a heads-up to the user to indicate that a research of a counter example is going on.
Funny enough, we thought about that but only across packages. Now, the
situation gets a little tricky because of folder structure, it's easy
to define a module "foo" in `env`, `lib` and/or `validators`. From the
compiler's perspective, they all have the same name.
This is only a start. It compiles, but with a few TODOs left open. In particular, it doesn't currently handle constants depending on other constants or functions; nor does it hoist constants.
The playground doesn't / cannot depend on aiken-project because that becomes a gigantic pain. So instead, we try to keep essential stuff inside aiken-lang when possible.
Unfortunately, as documented in:
https://github.com/IntersectMBO/cardano-ledger/issues/4571
Some Option fields in the script context certificates are going to
remain set to None, at least until the next Hard fork. There's a risk
that people permanently lock their funds if they expect deposits on
registration credentials to ever be `Some`.
So, we introduce a special type that emulate an `Option` that can only
ever be `None`. We call it `Never` and it is the first type of this
kind (i.e. with constructors indexes not starting at 0).
The rationale is two folds:
1. It's more consistent with how we already separate the validator
name from its module.
2. Because `_` may be present in Aiken's validator's name, it is hard
to read and I am afraid it could potentially conflict later on. So
it's better to use a separator that cannot appear in validator
names.
Some remains invalid, in particular:
- We need to handle the annotated Data case, which we still parse
correctly but do nothing about any longer.
- There's also a strange behavior with opaque type turned public?
This is useful when splitting module for dependencies, yet without the desire to expose internal constructors and types. This merely skips the documentation generation; but doesn't prevent the hidden module from being accessible.
The idea is pretty simple, we'll just look for lines starting with Markdown heading sections, and render them in the documentation. They appear both in the sidebar, and within the generated docs themselves in between functions. This, coupled with the order preservation of the declaration in a module should make the generated docs significantly more elegant to organize and present.
The rationale is to let them in the order they are defined, so that
library authors have some freedom in how they present information. On
top of that, we'll also now parse specifi comments as section headers
that will be inserted in the sidebar when present.
The point of those tests is to ensure that blueprints are generated
properly, irrespective of the generated code. It is annoying to
constantly get those test failing every time we introduce an
optimization or something that would slightly change the generated
UPLC.