Using ByteArrays as vectors on-chain is a lot more efficient than relying on actul Data's list of values. From the Rust end, it doesn't change much as we were already manipulating vectors anyway.
Also, this commit makes `apply_term` automatically re-intern the
program since it isn't safe to apply any term onto a UPLC program. In
particular, terms that introduce new let-bindings (via lambdas) will
mess with the already generated DeBruijn indices.
The problem doesn't occur for pure constant terms like Data. So we
still have a safe and fast version 'apply_data' when needed.
This was a mess to say to the least. The mess started when we wanted
to make all definitions in codegen use immutable maps of references --
which was and still is a good idea. Yet, the population of the data
types and functions definitions was done somehow in a separate step,
in a rather ad-hoc manner.
This commit changes that to ensure the project's data_types and
functions are populated while type checking the AST such that we need
not to redo it after.
The code for registering the data type definitions and function
definitions was also duplicated in at least 3 places. It is now a
method of the TypedModule.
Note: this change isn't only just cosmetic, it's also necessary for
the commit that follows which aims at adding tests to the set of
available function definitions, thus allowing to make property tests
callable.
Those end-to-end tests are useful. Both for controlling the behavior of the shrinker, but also to double check the reification of Plutus Data back into untyped expressions.
I had to work-around a few things to get opaque type and private types play nice. Also found a weird bug due to how we apply parameters after unique debruijn indexes have been also applied. A work-around is to re-intern the program.
True corresponds to Constr=1 and False corresponds to Constr=0; their position in the vector shall reflect that. Note that while this would in principle impact codegen for any other type, it doesn't for bool since we likely never looked up this type definition since it is well-known. It does now as the 'reify' function relies on this. Whoopsie.
This is very very rough at the moment. But it does a couple of thing:
1. The 'ArgVia' now contains an Expr/TypedExpr which should unify to a Fuzzer. This is to avoid having to introduce custom logic to handle fuzzer referencing. So this now accepts function call, field access etc.. so long as they unify to the right thing.
2. I've done quite a lot of cleanup in aiken-project mostly around the tests and the naming surrounding them. What we used to call 'Script' is now called 'Test' and is an enum between UnitTest (ex-Script) and PropertyTest. I've moved some boilerplate and relevant function under those module Impl.
3. I've completed the end-to-end pipeline of:
- Compiling the property test
- Compiling the fuzzer
- Generating an initial seed
- Running property tests sequentially, threading the seed through each step.
An interesting finding is that, I had to wrap the prop test in a similar wrapper that we use for validator, to ensure we convert primitive types wrapped in Data back to UPLC terms. This is necessary because the fuzzer return a ProtoPair (and soon an Array) which holds 'Data'.
At the moment, we do nothing with the size, though the size should ideally grow after each iteration (up to a certain cap).
In addition, there are a couple of todo/fixme that I left in the code as reminders of what's left to do beyond the obvious (error and success reporting, testing, etc..)
The parameter is special as it takes no annotation but a 'via' keyword followed by an expression that should unify to a Fuzzer<a>, where Fuzzer<a> = fn(Seed) -> (Seed, a). The current commit only allow name identifiers for now. Ultimately, this may allow full expressions.
We cannot enforce internal invariants on opaque types from only structural checks on Data. Thus, it is forbidden to find an opaque type in an outward-facing interface. Instead, users should rely on intermediate representations and lift them into opaque types using constructors and methods provided by the type (e.g. Dict.from_list, Rational.from_int, Rational.new, ...)
We've been wrongly representing large ints as BigInt, causing them to
behave differently in the VM through builtins like 'serialise_data'.
Indeed, we expect anything that fits in 8 bytes to be encoded as Major
Type 0 or 1. But we were switching to encoding as Major type 6
(tagged, PosBigInt, NegBigInt) for much smaller values! Anything
outside of the range [-2^32, 2^32-1] would be treated as big int
(positive or negative).
Why? Because we checked whether a value i would fit in an i64, and if
it didn't we treated it as big int. But the reality is more subtle...
Fortunately, Rust has i128 and the minicbor library implements TryFrom
which enforces that the value fits in a range of [-2^64, 2^64 - 1], so
we're back on track easily.
While looking at some code, I noticed that this
warning would show up even if an error for a
non-exhaustive when/is shows up for the same when/is
expression. This isn't a useful situation to show this
warning because things are not exhaustive yet so we should
let the user finish and only provide the errors. If things
are exhaustive then the code proceeds and if a warning was set
when there's only one clause pattern then this warning message
can be pushed because that's when it's actually useful.
This commit allows Data to be optionally annotated with a
phantom-type. This doesn't change anything in codegen but we can now
leverage this information to generate better blueprint schemas.
Note that the formatter rewrite parens-block sequences as curly-block
sequences anyway. Albeit weird looking syntax, they are valid
nonetheless.
I also clarified a bit the hints and description of the
'illegal::return' error as it would mistakenly say 'function' instead
of 'block'.
- do not erase sequences if the sole expression is an assignment
- emit parse error if an assignment is assigned to an assignment
- do not allow assignments in logical op chains
This reverts commit 21f0b3a6220fdafb8f6aad6855de89d8cdde0e1b.
Rationale:
The absence of clause guard was here done *on purpose*. Indeed,
introducing a clause guard here forces either duplication or the use
of a wildcard which is not "future proof".
Should we make a change to that one day (e.g. add a new variant to
TraceLevel), we won't get any compiler warning and we'll very likely
forget to update that particular section of the code.
So as much as possible, enforce complete pattern-match on variants
make for code that is easier to maintain in the long-run.
This allows for a more fine-grained control over how the traces are showed. Now users can instrument the compiler to preserve only their user-defined traces, or the only the compiler, or all, or none. We also want to add another trace level on top of that: 'compact' to only show line numbers; which will work for both user-defined and/or compiler-generated traces.
We rely on some errors to just bubble up and get printed.
By matching on result at the top level like this we blocked some
error messages from being able to be printed. For me this showed up
when `cargo run -- new thing/thing` printed nothing even when there
was an existing `thing` folder. It has already been the pattern for
sometime for some subcommands to handle calling process::exit(1) in
situations where it needs to handle error reporting more specially. It
may seem lame, hacky, or repetitive but it's easy to maintain and read.
This is a *slight* hack / abuse of the code() method as we are now
doing a bit of formatting within that function. Yet, we only do so at
the very top-level (i.e. project's Error) because we can't actually
fiddle with how miette presents errors.
Also removed the 'clear' flag to do it by default instead of clogging
the terminal view.
This now works pretty nicely, and the logic is back under
`aiken_project`.
Rather than have this logic in the aiken binary, this provides a generic
mechanism to do "something" on file change events. KtorZ is going to
handle wiring it up to the CLI in the best way for the project.
I tried to write some tests for this, but it's hard to isolate the
watcher logic without wrestling with the borrow checker, or overly
neutering this utility.
This adds the following command
```
aiken watch
```
There are some open questions to answer, though:
- I really like the ergonomics of `aiken watch`; but it also makes sense
as a flag to `aiken check` or `aiken build` etc.; should we just
support the flag, the command, or both?
- Right now I duplicated the with_project method, because it forces
process::exit(1); Should we refactor this, and if so, how?
- Are there other configuration options we want?
to pass 2 of the conformance tests, we need to make sure
that we aren't typechecking builtin arguments as arguments
are applied. This switches push to by removing the call to check_type
and then reworking all the associated unwrap methods on Value
so that they return the same errors that were being returned before.
feat: impl flat serialization and deserialization for bls constants
feat: started on cost models for the new builtins
Co-authored-by: rvcas <x@rvcas.dev>
- sort alphabetically
- add some of the missing builtins used for ints
- comment on what is "correct" for future additions
- comment on the current remaining missing builtins
- comment on the current incoherent method names
This was somewhat weirdly done, with a boolean 'imported' set on the
formers; but an explicit new warning for values. I don't see the point
of distinguishing them so I just merged them all into a single
warning.
I have however preserved the 'UnusedType' and 'UnusedConstructor'
warnings since they were ALSO used for unused private constructors or
types.