These were needed before as a way to _partially deserialize_
blueprints. Indeed, some commands required accessing information of
the blueprint, but not necessarily the schema. So out of laziness (or
cleverness?), we only deserialized validators as serde::Value and
achieved that through the use of generics.
Now that validators and schemas have proper deserialisers, we can
simply deserialize a blueprint.
TODO: Our serialisation/deserialisation is safe with regards to
itself; i.e. it roundtrips. However, we only supports a subset of the
specified blueprint format. For example, we would fail to deserialize
blueprints that have inline data-schemas (we only use references).
* move uplc::ast::builder to uplc::builder
* rename aiken_lang::uplc to aiken_lang::gen_uplc
* move aiken_lang::air and aiken_lang::builder to aiken_lang::gen_uplc
as submodules
Co-authored-by: Kasey White <kwhitemsg@gmail.com>
This was a bit tricky and I ended up breaking things down a lot and
trying different path. This commit is the result of the most
satisfying one.
It introduces a new 'concept' and types: Definitions and Reference.
These elements are meant to reflect JSON pointers and JSON-schema
definitions which we now use for pretty much all user-defined
data-types.
In fact, Schemas are no longer inlined, but are always referencing
some schema under "definitions".
This indirection is necessary in order to cope with recursive types.
And while it's only truly necessary for recursive types, using it
consistently makes it both easier to produce and easier to consume.
---
The blueprint generation for recursive types here also works thanks to
the 'Definitions' data-structure wrapper around a BTreeMap. This uses
a strategy where:
(1) schemas are only generated if they haven't been seen before
(2) schemas are marked as seen BEFORE actually being generated (to
effectively stop a recursive generation).
This relies on one important aspect: the key must be uniquely
identifying a given schema. Which means that we have to monomorphize
data-types with generic parameters also here, and use keys that are
specialized in one data-type.
---
In this large overhaul we've also lost one thing which I didn't bother
re-introducing yet to keep the work manageable: title for record
fields. Before, we use to pull those from record constructor when
available, yet now, every record constructor has been replaced by a
`$ref`. We could theoritically attach a title to the reference. I'll
try to quickly add that in a later commit.
We want the lookup to yield a result when there's only a single
validator; and no title is provided. So that users can simply do
'aiken address' in their project if it's unambiguous. The validator's
name is only required to disambiguate between multiple validators.
I also noticed that the order of arguments in with_validator was
wrong. Somehow.
Here's a trick though: I got lazy (a bit) and did not write a full deserializer for Schema because this is busywork and not at all necessary at this stage. Instead, I've made the blueprint parameterized by a generic type <T>; which represents the type of the underlying blueprint's schema. When deserializing from JSON, we can default to 'Value' to get a free deserializer. Since all we're interested about is the program and the metadata (purpose and title) of a validator, it works nicely.
Serialization however expects a Blueprint<Schema>, and most of the functions operates over a Blueprint<Schema> anyway.
This is quite something, because now we have a testing pipeline that
can also be used for testing other compiler-related stuff such as the
type-checker or the code generator.
This also now introduce two levels of representable types (because it's needed at least for tuples):
Plutus Data (a.k.a Data) and UPLC primitives / constants (a.k.a Schema).
In practice, we don't want to specify blueprints that use direct UPLC primitives because there's little support for producing those in the ecosystem. So we should aim for producing only Data whenever we can. Yet we don't want to forbid it either in case people know what they're doing. Which means that we need to capture that difference well in the type modelling (in Rust and in the CIP-0057 specification).
I've also simplified the error type for now, just to provide some degree of feedback while working on this. I'll refine it later with proper errors.
The blueprint is generated at the root of the repository and is
intended to be versioned with the rest. It acts as a business card
that contains many practical information. There's a variety of tools
we can then build on top of open-source contracts. And, quite
importantly, the blueprint is language-agnostic; it isn't specific to
Aiken. So it is really meant as an interop format within the
ecosystem.