Funny enough, we thought about that but only across packages. Now, the
situation gets a little tricky because of folder structure, it's easy
to define a module "foo" in `env`, `lib` and/or `validators`. From the
compiler's perspective, they all have the same name.
This is only a start. It compiles, but with a few TODOs left open. In particular, it doesn't currently handle constants depending on other constants or functions; nor does it hoist constants.
The playground doesn't / cannot depend on aiken-project because that becomes a gigantic pain. So instead, we try to keep essential stuff inside aiken-lang when possible.
Unfortunately, as documented in:
https://github.com/IntersectMBO/cardano-ledger/issues/4571
Some Option fields in the script context certificates are going to
remain set to None, at least until the next Hard fork. There's a risk
that people permanently lock their funds if they expect deposits on
registration credentials to ever be `Some`.
So, we introduce a special type that emulate an `Option` that can only
ever be `None`. We call it `Never` and it is the first type of this
kind (i.e. with constructors indexes not starting at 0).
The rationale is two folds:
1. It's more consistent with how we already separate the validator
name from its module.
2. Because `_` may be present in Aiken's validator's name, it is hard
to read and I am afraid it could potentially conflict later on. So
it's better to use a separator that cannot appear in validator
names.
Some remains invalid, in particular:
- We need to handle the annotated Data case, which we still parse
correctly but do nothing about any longer.
- There's also a strange behavior with opaque type turned public?
This is useful when splitting module for dependencies, yet without the desire to expose internal constructors and types. This merely skips the documentation generation; but doesn't prevent the hidden module from being accessible.
The idea is pretty simple, we'll just look for lines starting with Markdown heading sections, and render them in the documentation. They appear both in the sidebar, and within the generated docs themselves in between functions. This, coupled with the order preservation of the declaration in a module should make the generated docs significantly more elegant to organize and present.
The rationale is to let them in the order they are defined, so that
library authors have some freedom in how they present information. On
top of that, we'll also now parse specifi comments as section headers
that will be inserted in the sidebar when present.
The point of those tests is to ensure that blueprints are generated
properly, irrespective of the generated code. It is annoying to
constantly get those test failing every time we introduce an
optimization or something that would slightly change the generated
UPLC.
Let's consider the following case:
```
type Var =
Integer
type Vars =
List<Var>
```
This incorrectly reports an infinite cycle; due to the inability to
properly type-check `Var` which is also a dependent var of `Vars`. Yet
the real issue here being that `Integer` is an unknown type.
This commit also upgrades miette to 7.2.0, so that we can also display
a better error output when the problem is actually a cycle.
The spirit here is to make it easier to discover this syntax. People
have different intuition about it and the single pipe may not be the
most obvious one.
It is however the recommended syntax, and the formatter will rewrite
any of the other to it.
The syntax is as follows:
{ "bytes" = "...", "encoding" = "<encoding>" }
The following encoding are accepted:
"utf8", "utf-8", "hex", "base16"
Note: the duplicates are only there to make it easier for people to
discover them by accident. When "hex" (resp. "base16") is specified,
the bytes string will be decoded and must be a valid hex string.
This is currently extremely limited as it only supports (UTF-8)
bytearrays and integers. We should seek to at least support hex bytes
sequences, as well as bools, lists and possibly options.
For the latter, we the rework on constant outlined in #992 is
necessary.
We figure out dependencies by looking at 'use' definition in parsed
modules. However, in the case of environment modules, we must consider
all of them when seeing "use env". Without that, the env modules are
simply compiled in parallel and may not yet have been compiled when
they are needed as actual dependencies.
We simply provide a flag with a free-form output which acts as
the module to lookup in the 'env' folder. The strategy is to replace
the environment module name on-the-fly when a user tries to import
'env'.
If the environment isn't found, an 'UnknownModule' error is raised
(which I will slightly adjust in a following commits to something more
related to environment)
There are few important consequences to this design which may not seem
immediately obvious:
1. We parse and type-check every env modules, even if they aren't
used. This ensures that code doesn't break with a compilation error
simply because people forgot to type-check a given env.
Note that compilation could still fail because the env module
itself could provide an invalid API. So it only prevents each
modules to be independently wrong when taken in isolation.
2. Technically, this also means that one can import env modules in
other env modules by their names. I don't know if it's a good or
bad idea at this point but it doesn't really do any wrong;
dependencies and cycles are handlded all-the-same.
Using 'pallas' as a dependency brings utxo-rpc other annoying dependencies such as _tokyo_. This not only makes the overall build longer, but it also prevents it to even work when targetting wasm.
- Doesn't allow pattern-matching on G1/G2 elements and strings,
because the use cases for those is unclear and it adds complexity to
the feature.
- We still _parse_ patterns on G1/G2 elements and strings, but emit an
error in those cases.
- The syntax is the same as for bytearray literals (i.e. supports hex,
utf-8 strings or plain arrays of bytes).
There are currently two zero-arg builtins:
- mkNilData
- mkNilPairData
And while they have strictly speaking no arguments, the VM still
requires that they are called with an extra unit argument applied.
While this builtin is readily available through the Aiken syntax
`[head, ..tail]`, there's no reason to not support its builtin form
even though we may not encourage its usage. For completeness and to
avoid bad surprises, it is now supported.
Fixes#964.
We've never been using those 'expected' tokens captured during
parsing, which is lame because they contain useful information!
This is much better than merely showing our infamous
"Try removing it!"
Actually, this has been a bug for a long time it seems. Calling any
prelude functions using a qualified import would result in a codegen
crash. Whoopsie.
This is now fixed as shown by the regression test.
This is not fully satisfactory as it pollutes a bit the prelude. Ideally, those functions should only be visible
and usable by the underlying trace code. But for now, we'll just go with it.
This is mainly a syntactic trick/sugar, but it's been pretty annoying
to me for a while that we can't simply pattern-match/destructure
single-variant constructors directly from the args list. A classic
example is when writing property tests:
```ak
test foo(params via both(bytearray(), int())) {
let (bytes, ix) = params
...
}
```
Now can be replaced simply with:
```
test foo((bytes, ix) via both(bytearray(), int())) {
...
}
```
If feels natural, especially coming from the JavaScript, Haskell or
Rust worlds and is mostly convenient. Behind the scene, the compiler
does nothing more than re-writing the AST as the first form, with
pre-generated arg names. Then, we fully rely on the existing
type-checking capabilities and thus, works in a seamless way as if we
were just pattern matching inline.
While we agree on the idea of having some ways of emitting events, the
design hasn't been completely fleshed out and it is unclear whether
events should have a well-defined format independent of the framework
/ compiler and what this format should be.
So we need more time discussing and agreeing about what use case we
are actually trying to solve with that.
Irrespective of that, some cleanup was also needed on the UPLC side
anyway since the PR introduced a lot of needless duplications.
This was somehow wrong and corrected by codegen later on, but we should be re-using the same generic id across an entire definition if the variable refers to the same element.
Before this commit, we would parse 'Pair' as a user-defined
data-types, and thus piggybacking on that whole record system. While
perhaps handy for some things, it's also semantically wrong and
induces a lot more complexity in codegen which now needs to
systematically distinguish every data-type access between pairs, and
others.
So it's better to have it as a separate expression, and handle it
similar to tuples (since it's fundamentally a 2-tuple with a special
serialization).
This makes the search for counterexample slower in some cases by 30-40% with the hope of finding better counterexamples. We might want to add a flag '--simplification-level' to the command-line to let users decide on the level of simplifications.