Let's consider the following case:
```
type Var =
Integer
type Vars =
List<Var>
```
This incorrectly reports an infinite cycle; due to the inability to
properly type-check `Var` which is also a dependent var of `Vars`. Yet
the real issue here being that `Integer` is an unknown type.
This commit also upgrades miette to 7.2.0, so that we can also display
a better error output when the problem is actually a cycle.
The spirit here is to make it easier to discover this syntax. People
have different intuition about it and the single pipe may not be the
most obvious one.
It is however the recommended syntax, and the formatter will rewrite
any of the other to it.
This is currently extremely limited as it only supports (UTF-8)
bytearrays and integers. We should seek to at least support hex bytes
sequences, as well as bools, lists and possibly options.
For the latter, we the rework on constant outlined in #992 is
necessary.
We simply provide a flag with a free-form output which acts as
the module to lookup in the 'env' folder. The strategy is to replace
the environment module name on-the-fly when a user tries to import
'env'.
If the environment isn't found, an 'UnknownModule' error is raised
(which I will slightly adjust in a following commits to something more
related to environment)
There are few important consequences to this design which may not seem
immediately obvious:
1. We parse and type-check every env modules, even if they aren't
used. This ensures that code doesn't break with a compilation error
simply because people forgot to type-check a given env.
Note that compilation could still fail because the env module
itself could provide an invalid API. So it only prevents each
modules to be independently wrong when taken in isolation.
2. Technically, this also means that one can import env modules in
other env modules by their names. I don't know if it's a good or
bad idea at this point but it doesn't really do any wrong;
dependencies and cycles are handlded all-the-same.
Using 'pallas' as a dependency brings utxo-rpc other annoying dependencies such as _tokyo_. This not only makes the overall build longer, but it also prevents it to even work when targetting wasm.
This is not fully satisfactory as it pollutes a bit the prelude. Ideally, those functions should only be visible
and usable by the underlying trace code. But for now, we'll just go with it.
And move some logic out of project/lib to be near the CheckedModule
instead. The project API is already quite heavy and long, so making it
more lightweight is generally what we want to tend to.
This changes ensure that we only compile modules from dependencies
that are used (or transitively used) in the project. This allows to
discard entire compilation steps at a module level, for modules that
we do not use.
The main goal of this change isn't performances. It's about making
dependencies management slightly easier in the time we decide whether
and how we want to manage transitive dependencies in Aiken.
A concrete case here is aiken-lang/stdlib, which will soon depend on
aiken-lang/fuzz. However, we do not want to require every single
project depending on stdlib to also require fuzz. So instead, we want
to seggregate fuzz API from stdlib in separate module, and only
compile those if they appear in the pruned dependency graph.
While the goal isn't performances, here are some benchmarks analyzing
the performances of deps pruning on a simple project depends on a few
modules from stdlib:
Benchmark 1: ./aiken-without-deps-pruning check scratchpad
Time (mean ± σ): 190.3 ms ± 101.1 ms [User: 584.5 ms, System: 14.2 ms]
Range (min … max): 153.0 ms … 477.7 ms 10 runs
Benchmark 2: ./aiken-with-deps-pruning check scratchpad
Time (mean ± σ): 162.3 ms ± 46.3 ms [User: 572.6 ms, System: 14.0 ms]
Range (min … max): 142.8 ms … 293.7 ms 10 runs
As we can see, this change seems to have an overall positive impact on
the compilation time.
It might be slightly cleaner and more extensible to change to return a summary, potentially even making track the tests, coverage, etc. so it can be serialized to JSON. But, for now, this is much simpler, and the approach that KtorZ suggested.
Also, this commit makes `apply_term` automatically re-intern the
program since it isn't safe to apply any term onto a UPLC program. In
particular, terms that introduce new let-bindings (via lambdas) will
mess with the already generated DeBruijn indices.
The problem doesn't occur for pure constant terms like Data. So we
still have a safe and fast version 'apply_data' when needed.
This was a mess to say to the least. The mess started when we wanted
to make all definitions in codegen use immutable maps of references --
which was and still is a good idea. Yet, the population of the data
types and functions definitions was done somehow in a separate step,
in a rather ad-hoc manner.
This commit changes that to ensure the project's data_types and
functions are populated while type checking the AST such that we need
not to redo it after.
The code for registering the data type definitions and function
definitions was also duplicated in at least 3 places. It is now a
method of the TypedModule.
Note: this change isn't only just cosmetic, it's also necessary for
the commit that follows which aims at adding tests to the set of
available function definitions, thus allowing to make property tests
callable.
Those end-to-end tests are useful. Both for controlling the behavior of the shrinker, but also to double check the reification of Plutus Data back into untyped expressions.
I had to work-around a few things to get opaque type and private types play nice. Also found a weird bug due to how we apply parameters after unique debruijn indexes have been also applied. A work-around is to re-intern the program.
This is very very rough at the moment. But it does a couple of thing:
1. The 'ArgVia' now contains an Expr/TypedExpr which should unify to a Fuzzer. This is to avoid having to introduce custom logic to handle fuzzer referencing. So this now accepts function call, field access etc.. so long as they unify to the right thing.
2. I've done quite a lot of cleanup in aiken-project mostly around the tests and the naming surrounding them. What we used to call 'Script' is now called 'Test' and is an enum between UnitTest (ex-Script) and PropertyTest. I've moved some boilerplate and relevant function under those module Impl.
3. I've completed the end-to-end pipeline of:
- Compiling the property test
- Compiling the fuzzer
- Generating an initial seed
- Running property tests sequentially, threading the seed through each step.
An interesting finding is that, I had to wrap the prop test in a similar wrapper that we use for validator, to ensure we convert primitive types wrapped in Data back to UPLC terms. This is necessary because the fuzzer return a ProtoPair (and soon an Array) which holds 'Data'.
At the moment, we do nothing with the size, though the size should ideally grow after each iteration (up to a certain cap).
In addition, there are a couple of todo/fixme that I left in the code as reminders of what's left to do beyond the obvious (error and success reporting, testing, etc..)