Alongside a bunch of other stuff from the coverage list. In
particular, the mint transaction contains:
- reference inputs
- multiple outputs, with assets, and type-0, type-1 and type-6
addresses.
- an output with a datum hash
- an output with an inline script
- carries an extra datum witness, preimage of the embedded hash
- mint, with 2 policies purposely ordered wrongly, with 1 and 2
assets purposely ordered wrong. One of the mint is actually a
burn (i.e. negative quantity)
This is intense, as we still want to preserve the serializer for V1 &
V2, and I've tried as much as possible to avoid polluting the
application layer with many enum types such as:
```
pub enum TxOut {
V1(TransactionOutput),
V2(TransactionOutput),
V3(TransactionOutput),
}
```
Those types make working with the script context cumbersome, and are
only truly required to provide different serialisation strategies. So
instead, we keep one top-level `TxInfo V1/V2/V3` type, and we ensure
to pass serialization strategies as type wrappers.
This way, the strategy propagates through the structure up until it's
eliminated when it reaches the relevant types.
All-in-all, this strikes a correct balance between maintainability and
repetition; and it makes it possible to define _different but mostly
identical_ encoders for the various versions.
With it, I've been able to successfully encode a V3 script context and
match it against one produced using the Haskell libraries. More to
come.
This is mainly a syntactic trick/sugar, but it's been pretty annoying
to me for a while that we can't simply pattern-match/destructure
single-variant constructors directly from the args list. A classic
example is when writing property tests:
```ak
test foo(params via both(bytearray(), int())) {
let (bytes, ix) = params
...
}
```
Now can be replaced simply with:
```
test foo((bytes, ix) via both(bytearray(), int())) {
...
}
```
If feels natural, especially coming from the JavaScript, Haskell or
Rust worlds and is mostly convenient. Behind the scene, the compiler
does nothing more than re-writing the AST as the first form, with
pre-generated arg names. Then, we fully rely on the existing
type-checking capabilities and thus, works in a seamless way as if we
were just pattern matching inline.
Refactor get_uplc_type to account for constr types that don't exactly resolve to a uplc type
Check arg_stack in uplc generator has only 1 argument at the end of the generation
warning fixes
Temporarily using the 'specialize-dict-key' branch from the stdlib
which makes use of Pair where relevant. Once this is merged back into
'main' we should update the acceptance test toml files to keep getting
them automatically upgraded.
This commit also fixes an oversight in the reification of data-types
now properly distinguishing between pairs and 2-tuples.
Co-authored-by: Microproofs <kasey.white@cardanofoundation.org>