use std::{collections::VecDeque, ops::Deref, rc::Rc}; use crate::{ ast::{Constant, NamedDeBruijn, Term, Type}, builtins::DefaultFunction, }; pub mod cost_model; mod error; mod runtime; use cost_model::{ExBudget, StepKind}; pub use error::Error; use pallas_primitives::babbage::{BigInt, Language, PlutusData}; use self::{cost_model::CostModel, runtime::BuiltinRuntime}; enum MachineStep { Return(Rc, Value), Compute(Rc, Rc>, Rc>), Done(Rc>), } impl TryFrom> for Term { type Error = Error; fn try_from(value: Option) -> Result { match value { Some(MachineStep::Done(term)) => Ok(Rc::as_ref(&term).clone()), _ => Err(Error::MachineNeverReachedDone), } } } pub struct Machine { costs: CostModel, pub ex_budget: ExBudget, slippage: u32, unbudgeted_steps: [u32; 8], pub logs: Vec, stack: Vec, version: Language, } impl Machine { pub fn new( version: Language, costs: CostModel, initial_budget: ExBudget, slippage: u32, ) -> Machine { Machine { costs, ex_budget: initial_budget, slippage, unbudgeted_steps: [0; 8], logs: vec![], stack: vec![], version, } } pub fn run(&mut self, term: &Term) -> Result, Error> { use MachineStep::*; let startup_budget = self.costs.machine_costs.get(StepKind::StartUp); self.spend_budget(startup_budget)?; self.stack.push(Compute( Rc::new(Context::NoFrame), Rc::new(vec![]), Rc::new(term.clone()), )); while let Some(step) = self.stack.pop() { match step { Compute(context, env, t) => { self.compute(context, env, t)?; } Return(context, value) => { self.return_compute(context, value)?; } d @ Done(_) => { self.stack.push(d); break; } }; } self.stack.pop().try_into() } fn compute( &mut self, context: Rc, env: Rc>, term: Rc>, ) -> Result<(), Error> { match term.as_ref() { Term::Var(name) => { self.step_and_maybe_spend(StepKind::Var)?; let val = self.lookup_var(name, env)?; self.stack.push(MachineStep::Return(context, val)); } Term::Delay(body) => { self.step_and_maybe_spend(StepKind::Delay)?; self.stack.push(MachineStep::Return( context, Value::Delay(Rc::clone(body), env), )); } Term::Lambda { parameter_name, body, } => { self.step_and_maybe_spend(StepKind::Lambda)?; self.stack.push(MachineStep::Return( context, Value::Lambda { parameter_name: parameter_name.clone(), body: Rc::clone(body), env, }, )); } Term::Apply { function, argument } => { self.step_and_maybe_spend(StepKind::Apply)?; self.stack.push(MachineStep::Compute( Rc::new(Context::FrameApplyArg( Rc::clone(&env), Rc::clone(argument), context, )), env, Rc::clone(function), )); } Term::Constant(x) => { self.step_and_maybe_spend(StepKind::Constant)?; self.stack .push(MachineStep::Return(context, Value::Con(x.clone()))); } Term::Force(body) => { self.step_and_maybe_spend(StepKind::Force)?; self.stack.push(MachineStep::Compute( Rc::new(Context::FrameForce(context)), env, Rc::clone(body), )); } Term::Error => return Err(Error::EvaluationFailure), Term::Builtin(fun) => { self.step_and_maybe_spend(StepKind::Builtin)?; let runtime: BuiltinRuntime = (*fun).into(); self.stack.push(MachineStep::Return( context, Value::Builtin { fun: *fun, term, runtime, }, )); } }; Ok(()) } fn return_compute(&mut self, context: Rc, value: Value) -> Result<(), Error> { match context.as_ref() { Context::FrameApplyFun(function, ctx) => { self.apply_evaluate(ctx.to_owned(), function.to_owned(), value)? } Context::FrameApplyArg(arg_var_env, arg, ctx) => { self.stack.push(MachineStep::Compute( Rc::new(Context::FrameApplyFun(value, ctx.to_owned())), arg_var_env.to_owned(), Rc::clone(arg), )); } Context::FrameForce(ctx) => self.force_evaluate(ctx.to_owned(), value)?, Context::NoFrame => { if self.unbudgeted_steps[7] > 0 { self.spend_unbudgeted_steps()?; } let term = self.discharge_value(value); self.stack.push(MachineStep::Done(term)); } }; Ok(()) } fn discharge_value(&mut self, value: Value) -> Rc> { match value { Value::Con(x) => Rc::new(Term::Constant(x)), Value::Builtin { term, .. } => term, Value::Delay(body, env) => self.discharge_value_env(env, Rc::new(Term::Delay(body))), Value::Lambda { parameter_name, body, env, } => self.discharge_value_env( env, Rc::new(Term::Lambda { parameter_name: NamedDeBruijn { text: parameter_name.text, index: 0.into(), }, body, }), ), } } fn discharge_value_env( &mut self, env: Rc>, term: Rc>, ) -> Rc> { fn rec( lam_cnt: usize, t: Rc>, this: &mut Machine, env: Rc>, ) -> Rc> { match t.as_ref() { Term::Var(name) => { let index: usize = name.index.into(); if lam_cnt >= index { Rc::new(Term::Var(name.clone())) } else { env.get::(env.len() - (index - lam_cnt)) .cloned() .map_or(Rc::new(Term::Var(name.clone())), |v| { this.discharge_value(v) }) } } Term::Lambda { parameter_name, body, } => Rc::new(Term::Lambda { parameter_name: parameter_name.clone(), body: rec(lam_cnt + 1, Rc::clone(body), this, env), }), Term::Apply { function, argument } => Rc::new(Term::Apply { function: rec(lam_cnt, Rc::clone(function), this, Rc::clone(&env)), argument: rec(lam_cnt, Rc::clone(argument), this, env), }), Term::Delay(x) => Rc::new(Term::Delay(rec(lam_cnt, Rc::clone(x), this, env))), Term::Force(x) => Rc::new(Term::Force(rec(lam_cnt, Rc::clone(x), this, env))), rest => Rc::new(rest.clone()), } } rec(0, term, self, env) } fn force_evaluate(&mut self, context: Rc, value: Value) -> Result<(), Error> { match value { Value::Delay(body, env) => { self.stack.push(MachineStep::Compute(context, env, body)); Ok(()) } Value::Builtin { fun, term, mut runtime, } => { let force_term = Rc::new(Term::Force(term)); if runtime.needs_force() { runtime.consume_force(); let res = self.eval_builtin_app(fun, force_term, runtime)?; self.stack.push(MachineStep::Return(context, res)); Ok(()) } else { Err(Error::BuiltinTermArgumentExpected( force_term.as_ref().clone(), )) } } rest => Err(Error::NonPolymorphicInstantiation(rest)), } } fn apply_evaluate( &mut self, context: Rc, function: Value, argument: Value, ) -> Result<(), Error> { match function { Value::Lambda { body, mut env, .. } => { let e = Rc::make_mut(&mut env); e.push(argument); self.stack .push(MachineStep::Compute(context, Rc::new(e.clone()), body)); Ok(()) } Value::Builtin { fun, term, mut runtime, } => { let arg_term = self.discharge_value(argument.clone()); let t = Rc::new(Term::::Apply { function: term, argument: arg_term, }); if runtime.is_arrow() && !runtime.needs_force() { runtime.push(argument)?; let res = self.eval_builtin_app(fun, t, runtime)?; self.stack.push(MachineStep::Return(context, res)); Ok(()) } else { Err(Error::UnexpectedBuiltinTermArgument(t.as_ref().clone())) } } rest => Err(Error::NonFunctionalApplication(rest)), } } fn eval_builtin_app( &mut self, fun: DefaultFunction, term: Rc>, runtime: BuiltinRuntime, ) -> Result { if runtime.is_ready() { let cost = match self.version { Language::PlutusV1 => runtime.to_ex_budget_v1(&self.costs.builtin_costs), Language::PlutusV2 => runtime.to_ex_budget_v2(&self.costs.builtin_costs), }; self.spend_budget(cost)?; runtime.call(&mut self.logs) } else { Ok(Value::Builtin { fun, term, runtime }) } } fn lookup_var(&mut self, name: &NamedDeBruijn, env: Rc>) -> Result { env.get::(env.len() - usize::from(name.index)) .cloned() .ok_or_else(|| Error::OpenTermEvaluated(Term::Var(name.clone()))) } fn step_and_maybe_spend(&mut self, step: StepKind) -> Result<(), Error> { let index = step as u8; self.unbudgeted_steps[index as usize] += 1; self.unbudgeted_steps[7] += 1; if self.unbudgeted_steps[7] >= self.slippage { self.spend_unbudgeted_steps()?; } Ok(()) } fn spend_unbudgeted_steps(&mut self) -> Result<(), Error> { for i in 0..self.unbudgeted_steps.len() - 1 { let mut unspent_step_budget = self.costs.machine_costs.get(StepKind::try_from(i as u8)?); unspent_step_budget.occurences(self.unbudgeted_steps[i] as i64); self.spend_budget(unspent_step_budget)?; self.unbudgeted_steps[i] = 0; } self.unbudgeted_steps[7] = 0; Ok(()) } fn spend_budget(&mut self, spend_budget: ExBudget) -> Result<(), Error> { self.ex_budget.mem -= spend_budget.mem; self.ex_budget.cpu -= spend_budget.cpu; if self.ex_budget.mem < 0 || self.ex_budget.cpu < 0 { Err(Error::OutOfExError(self.ex_budget)) } else { Ok(()) } } } #[derive(Clone)] enum Context { FrameApplyFun(Value, Rc), FrameApplyArg(Rc>, Rc>, Rc), FrameForce(Rc), NoFrame, } #[derive(Clone, Debug)] pub enum Value { Con(Constant), Delay(Rc>, Rc>), Lambda { parameter_name: NamedDeBruijn, body: Rc>, env: Rc>, }, Builtin { fun: DefaultFunction, term: Rc>, runtime: BuiltinRuntime, }, } impl Value { pub fn is_integer(&self) -> bool { matches!(self, Value::Con(Constant::Integer(_))) } pub fn is_bool(&self) -> bool { matches!(self, Value::Con(Constant::Bool(_))) } // TODO: Make this to_ex_mem not recursive. pub fn to_ex_mem(&self) -> i64 { match self { Value::Con(c) => match c { Constant::Integer(i) => { if *i == 0 { 1 } else { ((i.abs() as f64).log2().floor() as i64 / 64) + 1 } } Constant::ByteString(b) => { if b.is_empty() { 1 } else { ((b.len() as i64 - 1) / 8) + 1 } } Constant::String(s) => s.chars().count() as i64, Constant::Unit => 1, Constant::Bool(_) => 1, Constant::ProtoList(_, items) => items.iter().fold(0, |acc, constant| { acc + Value::Con(constant.clone()).to_ex_mem() }), Constant::ProtoPair(_, _, l, r) => { Value::Con(*l.clone()).to_ex_mem() + Value::Con(*r.clone()).to_ex_mem() } Constant::Data(item) => self.data_to_ex_mem(item), }, Value::Delay(_, _) => 1, Value::Lambda { .. } => 1, Value::Builtin { .. } => 1, } } // I made data not recursive since data tends to be deeply nested // thus causing a significant hit on performance pub fn data_to_ex_mem(&self, data: &PlutusData) -> i64 { let mut stack: VecDeque<&PlutusData> = VecDeque::new(); let mut total = 0; stack.push_front(data); while let Some(item) = stack.pop_front() { // each time we deconstruct a data we add 4 memory units total += 4; match item { PlutusData::Constr(c) => { // note currently tag is not factored into cost of memory // create new stack with of items from the list of data let mut new_stack: VecDeque<&PlutusData> = VecDeque::from_iter(c.fields.deref().iter()); // Append old stack to the back of the new stack new_stack.append(&mut stack); stack = new_stack; } PlutusData::Map(m) => { let mut new_stack: VecDeque<&PlutusData>; // create new stack with of items from the list of pairs of data new_stack = m.iter().fold(VecDeque::new(), |mut acc, d| { acc.push_back(&d.0); acc.push_back(&d.1); acc }); // Append old stack to the back of the new stack new_stack.append(&mut stack); stack = new_stack; } PlutusData::BigInt(i) => { if let BigInt::Int(g) = i { let numb: i128 = (*g).try_into().unwrap(); total += Value::Con(Constant::Integer(numb as isize)).to_ex_mem(); } else { unreachable!() }; } PlutusData::BoundedBytes(b) => { let byte_string: Vec = b.deref().clone(); total += Value::Con(Constant::ByteString(byte_string)).to_ex_mem(); } PlutusData::Array(a) => { // create new stack with of items from the list of data let mut new_stack: VecDeque<&PlutusData> = VecDeque::from_iter(a.deref().iter()); // Append old stack to the back of the new stack new_stack.append(&mut stack); stack = new_stack; } } } total } pub fn expect_type(&self, r#type: Type) -> Result<(), Error> { let constant: Constant = self.clone().try_into()?; let constant_type = Type::from(&constant); if constant_type == r#type { Ok(()) } else { Err(Error::TypeMismatch(r#type, constant_type)) } } pub fn expect_list(&self) -> Result<(), Error> { let constant: Constant = self.clone().try_into()?; let constant_type = Type::from(&constant); if matches!(constant_type, Type::List(_)) { Ok(()) } else { Err(Error::ListTypeMismatch(constant_type)) } } pub fn expect_pair(&self) -> Result<(), Error> { let constant: Constant = self.clone().try_into()?; let constant_type = Type::from(&constant); if matches!(constant_type, Type::Pair(_, _)) { Ok(()) } else { Err(Error::PairTypeMismatch(constant_type)) } } } impl TryFrom for Type { type Error = Error; fn try_from(value: Value) -> Result { let constant: Constant = value.try_into()?; let constant_type = Type::from(&constant); Ok(constant_type) } } impl TryFrom for Constant { type Error = Error; fn try_from(value: Value) -> Result { match value { Value::Con(constant) => Ok(constant), rest => Err(Error::NotAConstant(rest)), } } } impl From<&Constant> for Type { fn from(constant: &Constant) -> Self { match constant { Constant::Integer(_) => Type::Integer, Constant::ByteString(_) => Type::ByteString, Constant::String(_) => Type::String, Constant::Unit => Type::Unit, Constant::Bool(_) => Type::Bool, Constant::ProtoList(t, _) => Type::List(Box::new(t.clone())), Constant::ProtoPair(t1, t2, _, _) => { Type::Pair(Box::new(t1.clone()), Box::new(t2.clone())) } Constant::Data(_) => Type::Data, } } }