use crate::{encode::Encode, zigzag}; use super::Error; pub struct Encoder { pub buffer: Vec, // Int used_bits: i64, // Int current_byte: u8, } impl Default for Encoder { fn default() -> Self { Self::new() } } impl Encoder { pub fn new() -> Encoder { Encoder { buffer: Vec::new(), used_bits: 0, current_byte: 0, } } /// Encode any type that implements [`Encode`]. pub fn encode(&mut self, x: T) -> Result<&mut Self, Error> { x.encode(self)?; Ok(self) } pub fn u8(&mut self, x: u8) -> Result<&mut Self, Error> { if self.used_bits == 0 { self.current_byte = x; self.next_word(); } else { self.byte_unaligned(x); } Ok(self) } /// Encode a `bool` value. pub fn bool(&mut self, x: bool) -> &mut Self { if x { self.one(); } else { self.zero(); } self } pub fn bytes(&mut self, x: &[u8]) -> Result<&mut Self, Error> { // use filler to write current buffer so bits used gets reset self.filler(); self.byte_array(x) } pub fn byte_array(&mut self, arr: &[u8]) -> Result<&mut Self, Error> { if self.used_bits != 0 { return Err(Error::BufferNotByteAligned); } self.write_blk(arr, &mut 0); Ok(self) } pub fn integer(&mut self, i: isize) -> &mut Self { let i = zigzag::to_usize(i); self.word(i); self } pub fn char(&mut self, c: char) -> &mut Self { self.word(c as usize); self } // TODO: Do we need this? pub fn string(&mut self, s: &str) -> &mut Self { for i in s.chars() { self.one(); self.char(i); } self.zero(); self } pub fn utf8(&mut self, s: &str) -> Result<&mut Self, Error> { self.bytes(s.as_bytes()) } pub fn word(&mut self, c: usize) -> &mut Self { let mut d = c; loop { let mut w = (d & 127) as u8; d >>= 7; if d != 0 { w |= 128; } self.bits(8, w); if d == 0 { break; } } self } pub fn encode_list_with( &mut self, list: Vec, encoder_func: for<'r> fn(u8, &'r mut Encoder) -> Result<(), Error>, ) -> Result<&mut Self, Error> { for item in list { self.one(); encoder_func(item, self)?; } self.zero(); Ok(self) } pub fn bits(&mut self, num_bits: i64, val: u8) -> &mut Self { match (num_bits, val) { (1, 0) => self.zero(), (1, 1) => self.one(), (2, 0) => { self.zero(); self.zero(); } (2, 1) => { self.zero(); self.one(); } (2, 2) => { self.one(); self.zero(); } (2, 3) => { self.one(); self.one(); } (_, _) => { self.used_bits += num_bits; let unused_bits = 8 - self.used_bits; match unused_bits { x if x > 0 => { self.current_byte |= val << x; } x if x == 0 => { self.current_byte |= val; self.next_word(); } x => { let used = -x; self.current_byte |= val >> used; self.next_word(); self.current_byte = val << (8 - used); self.used_bits = used; } } } } self } pub(crate) fn filler(&mut self) -> &mut Self { self.current_byte |= 1; self.next_word(); self } fn zero(&mut self) { if self.used_bits == 7 { self.next_word(); } else { self.used_bits += 1; } } fn one(&mut self) { if self.used_bits == 7 { self.current_byte |= 1; self.next_word(); } else { self.current_byte |= 128 >> self.used_bits; self.used_bits += 1; } } fn byte_unaligned(&mut self, x: u8) { let x_shift = self.current_byte | (x >> self.used_bits); self.buffer.push(x_shift); self.current_byte = x << (8 - self.used_bits); } fn next_word(&mut self) { self.buffer.push(self.current_byte); self.current_byte = 0; self.used_bits = 0; } fn write_blk(&mut self, arr: &[u8], src_ptr: &mut usize) { let src_len = arr.len() - *src_ptr; let blk_len = src_len.min(255); self.buffer.push(blk_len as u8); if blk_len == 0 { return; } self.buffer.extend(&arr[*src_ptr..blk_len]); *src_ptr += blk_len; self.write_blk(arr, src_ptr); } }