use std::{rc::Rc, sync::Arc}; use indexmap::{IndexMap, IndexSet}; use itertools::Itertools; use uplc::{ ast::{Constant as UplcConstant, Name, Term, Type as UplcType}, builder::{CONSTR_FIELDS_EXPOSER, CONSTR_INDEX_EXPOSER}, builtins::DefaultFunction, machine::{ runtime::{convert_constr_to_tag, ANY_TAG}, value::to_pallas_bigint, }, Constr, KeyValuePairs, PlutusData, }; use crate::{ ast::{ AssignmentKind, BinOp, ClauseGuard, Constant, DataType, Pattern, Span, TypedArg, TypedClause, TypedDataType, UnOp, }, expr::TypedExpr, tipo::{PatternConstructor, Type, TypeVar, ValueConstructorVariant}, IdGenerator, }; use super::{air::Air, scope::Scope, stack::AirStack}; #[derive(Clone, Debug)] pub struct FuncComponents { pub ir: Vec, pub dependencies: Vec, pub args: Vec, pub recursive: bool, pub defined_by_zero_arg: bool, pub is_code_gen_func: bool, } #[derive(Clone, Eq, Debug, PartialEq, Hash)] pub struct ConstrFieldKey { pub local_var: String, pub field_name: String, } #[derive(Clone, Debug, Eq, PartialEq, Hash)] pub struct DataTypeKey { pub module_name: String, pub defined_type: String, } pub type ConstrUsageKey = String; #[derive(Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)] pub struct FunctionAccessKey { pub module_name: String, pub function_name: String, pub variant_name: String, } #[derive(Clone, Debug)] pub struct AssignmentProperties { pub value_type: Arc, pub kind: AssignmentKind, } #[derive(Clone, Debug)] pub enum ClauseProperties { ConstrClause { clause_var_name: String, needs_constr_var: bool, is_complex_clause: bool, original_subject_name: String, final_clause: bool, }, ListClause { clause_var_name: String, needs_constr_var: bool, is_complex_clause: bool, original_subject_name: String, current_index: i64, final_clause: bool, }, TupleClause { clause_var_name: String, needs_constr_var: bool, is_complex_clause: bool, original_subject_name: String, defined_tuple_indices: IndexSet<(usize, String)>, final_clause: bool, }, } impl ClauseProperties { pub fn init(t: &Arc, constr_var: String, subject_name: String) -> Self { if t.is_list() { ClauseProperties::ListClause { clause_var_name: constr_var, needs_constr_var: false, is_complex_clause: false, original_subject_name: subject_name, current_index: -1, final_clause: false, } } else if t.is_tuple() { ClauseProperties::TupleClause { clause_var_name: constr_var, needs_constr_var: false, is_complex_clause: false, original_subject_name: subject_name, defined_tuple_indices: IndexSet::new(), final_clause: false, } } else { ClauseProperties::ConstrClause { clause_var_name: constr_var, needs_constr_var: false, is_complex_clause: false, original_subject_name: subject_name, final_clause: false, } } } pub fn is_complex_clause(&mut self) -> &mut bool { match self { ClauseProperties::ConstrClause { is_complex_clause, .. } | ClauseProperties::ListClause { is_complex_clause, .. } | ClauseProperties::TupleClause { is_complex_clause, .. } => is_complex_clause, } } pub fn needs_constr_var(&mut self) -> &mut bool { match self { ClauseProperties::ConstrClause { needs_constr_var, .. } | ClauseProperties::ListClause { needs_constr_var, .. } | ClauseProperties::TupleClause { needs_constr_var, .. } => needs_constr_var, } } pub fn is_final_clause(&mut self) -> &mut bool { match self { ClauseProperties::ConstrClause { final_clause, .. } | ClauseProperties::ListClause { final_clause, .. } | ClauseProperties::TupleClause { final_clause, .. } => final_clause, } } pub fn clause_var_name(&mut self) -> &mut String { match self { ClauseProperties::ConstrClause { clause_var_name, .. } | ClauseProperties::ListClause { clause_var_name, .. } | ClauseProperties::TupleClause { clause_var_name, .. } => clause_var_name, } } pub fn original_subject_name(&mut self) -> &mut String { match self { ClauseProperties::ConstrClause { original_subject_name, .. } | ClauseProperties::ListClause { original_subject_name, .. } | ClauseProperties::TupleClause { original_subject_name, .. } => original_subject_name, } } } pub fn convert_type_to_data(term: Term, field_type: &Arc) -> Term { if field_type.is_bytearray() { Term::b_data().apply(term) } else if field_type.is_int() { Term::i_data().apply(term) } else if field_type.is_void() { term.choose_unit(Term::Constant( UplcConstant::Data(PlutusData::Constr(Constr { tag: convert_constr_to_tag(0).unwrap(), any_constructor: None, fields: vec![], })) .into(), )) } else if field_type.is_map() { Term::map_data().apply(term) } else if field_type.is_string() { Term::b_data().apply(Term::Builtin(DefaultFunction::EncodeUtf8).apply(term)) } else if field_type.is_tuple() && matches!(field_type.get_uplc_type(), UplcType::Pair(_, _)) { Term::list_data() .apply( Term::mk_cons() .apply(Term::fst_pair().apply(Term::var("__pair"))) .apply( Term::mk_cons() .apply(Term::snd_pair().apply(Term::var("__pair"))) .apply(Term::empty_list()), ), ) .lambda("__pair") .apply(term) } else if field_type.is_list() || field_type.is_tuple() { Term::list_data().apply(term) } else if field_type.is_bool() { term.if_else( Term::Constant( UplcConstant::Data(PlutusData::Constr(Constr { tag: convert_constr_to_tag(1).unwrap(), any_constructor: None, fields: vec![], })) .into(), ), Term::Constant( UplcConstant::Data(PlutusData::Constr(Constr { tag: convert_constr_to_tag(0).unwrap(), any_constructor: None, fields: vec![], })) .into(), ), ) } else { term } } pub fn convert_data_to_type(term: Term, field_type: &Arc) -> Term { if field_type.is_int() { Term::un_i_data().apply(term) } else if field_type.is_bytearray() { Term::un_b_data().apply(term) } else if field_type.is_void() { Term::equals_integer() .apply(Term::integer(0.into())) .apply(Term::fst_pair().apply(Term::unconstr_data().apply(term))) .delayed_if_else(Term::unit(), Term::Error) } else if field_type.is_map() { Term::unmap_data().apply(term) } else if field_type.is_string() { Term::Builtin(DefaultFunction::DecodeUtf8).apply(Term::un_b_data().apply(term)) } else if field_type.is_tuple() && matches!(field_type.get_uplc_type(), UplcType::Pair(_, _)) { Term::mk_pair_data() .apply(Term::head_list().apply(Term::var("__list_data"))) .apply(Term::head_list().apply(Term::var("__tail"))) .lambda("__tail") .apply(Term::tail_list().apply(Term::var("__list_data"))) .lambda("__list_data") .apply(Term::unlist_data().apply(term)) } else if field_type.is_list() || field_type.is_tuple() { Term::unlist_data().apply(term) } else if field_type.is_bool() { Term::equals_integer() .apply(Term::integer(1.into())) .apply(Term::fst_pair().apply(Term::unconstr_data().apply(term))) } else { term } } pub fn rearrange_clauses(clauses: Vec) -> Vec { let mut sorted_clauses = clauses; // if we have a list sort clauses so we can plug holes for cases not covered by clauses // Now we sort by elements + tail if possible and otherwise leave an index in place if var or discard // This is a stable sort. i.e. matching elements amounts will remain in user given order. sorted_clauses = sorted_clauses .into_iter() .enumerate() .sorted_by(|(index1, clause1), (index2, clause2)| { let clause1_len = match &clause1.pattern { Pattern::List { elements, tail, .. } => { Some(elements.len() + usize::from(tail.is_some())) } _ if clause1.guard.is_none() => Some(100000), _ => None, }; let clause2_len = match &clause2.pattern { Pattern::List { elements, tail, .. } => { Some(elements.len() + usize::from(tail.is_some())) } _ if clause2.guard.is_none() => Some(100001), _ => None, }; if let Some(clause1_len) = clause1_len { if let Some(clause2_len) = clause2_len { return clause1_len.cmp(&clause2_len); } } index1.cmp(index2) }) .map(|(_, item)| item) .collect_vec(); let mut elems_len = 0; let mut final_clauses = sorted_clauses.clone(); let mut holes_to_fill = vec![]; let mut last_clause_index = 0; let mut last_clause_set = false; // If we have a catch all, use that. Otherwise use todo which will result in error // TODO: fill in todo label with description let plug_in_then = |index: usize, last_clause: &TypedClause| { if last_clause.guard.is_none() { match &last_clause.pattern { Pattern::Var { .. } | Pattern::Discard { .. } => last_clause.clone().then, _ => { let tipo = last_clause.then.tipo(); TypedExpr::Trace { location: Span::empty(), tipo: tipo.clone(), text: Box::new(TypedExpr::String { location: Span::empty(), tipo: crate::builtins::string(), value: format!("Clause hole found for {index} elements."), }), then: Box::new(TypedExpr::ErrorTerm { location: Span::empty(), tipo, }), } } } } else { let tipo = last_clause.then.tipo(); TypedExpr::Trace { location: Span::empty(), tipo: tipo.clone(), text: Box::new(TypedExpr::String { location: Span::empty(), tipo: crate::builtins::string(), value: format!("Clause hole found for {index} elements."), }), then: Box::new(TypedExpr::ErrorTerm { location: Span::empty(), tipo, }), } } }; let last_clause = &sorted_clauses[sorted_clauses.len() - 1]; let assign_plug_in_name = if let Pattern::Var { name, .. } = &last_clause.pattern { Some(name) } else { None }; for (index, clause) in sorted_clauses.iter().enumerate() { if let Pattern::List { elements, .. } = &clause.pattern { // found a hole and now we plug it while elems_len < elements.len() { let mut discard_elems = vec![]; for _ in 0..elems_len { discard_elems.push(Pattern::Discard { name: "_".to_string(), location: Span::empty(), }); } // If we have a named catch all then in scope the name and create list of discards, otherwise list of discards let clause_to_fill = if let Some(name) = assign_plug_in_name { TypedClause { location: Span::empty(), pattern: Pattern::Assign { name: name.clone(), location: Span::empty(), pattern: Pattern::List { location: Span::empty(), elements: discard_elems, tail: None, } .into(), }, guard: None, then: plug_in_then(elems_len, last_clause), } } else { TypedClause { location: Span::empty(), pattern: Pattern::List { location: Span::empty(), elements: discard_elems, tail: None, }, guard: None, then: plug_in_then(elems_len, last_clause), } }; holes_to_fill.push((index, clause_to_fill)); elems_len += 1; } } // if we have a pattern with no clause guards and a tail then no lists will get past here to other clauses if clause.guard.is_none() { match &clause.pattern { Pattern::Var { .. } => { last_clause_index = index + 1; last_clause_set = true; } Pattern::Discard { .. } => { last_clause_index = index + 1; last_clause_set = true; } Pattern::List { elements, tail: Some(tail), .. } => { let mut elements = elements.clone(); elements.push(*tail.clone()); if elements.iter().all(|element| { matches!(element, Pattern::Var { .. } | Pattern::Discard { .. }) }) && !last_clause_set && !elements.is_empty() { last_clause_index = index + 1; last_clause_set = true; } } _ => {} } } // If the last condition doesn't have a catch all or tail then add a catch all with a todo if index == sorted_clauses.len() - 1 { if let Pattern::List { tail: None, .. } = &clause.pattern { final_clauses.push(TypedClause { location: Span::empty(), pattern: Pattern::Discard { name: "_".to_string(), location: Span::empty(), }, guard: None, then: plug_in_then(index + 1, last_clause), }); } } elems_len += 1; } // Encountered a tail so stop there with that as last clause if last_clause_set { final_clauses = final_clauses[0..last_clause_index].to_vec(); } // insert hole fillers into clauses for (index, clause) in holes_to_fill.into_iter().rev() { final_clauses.insert(index, clause); } final_clauses } /// If the pattern is a list the return the number of elements and if it has a tail /// Otherwise return None pub fn get_list_elements_len_and_tail( pattern: &Pattern>, ) -> Option<(usize, bool)> { if let Pattern::List { elements, tail, .. } = &pattern { Some((elements.len(), tail.is_some())) } else if let Pattern::Assign { pattern, .. } = &pattern { if let Pattern::List { elements, tail, .. } = pattern.as_ref() { Some((elements.len(), tail.is_some())) } else { None } } else { None } } #[allow(clippy::too_many_arguments)] pub fn list_access_to_uplc( names: &[String], id_list: &[u64], tail: bool, current_index: usize, term: Term, tipos: Vec>, check_last_item: bool, is_list_accessor: bool, tracing: bool, ) -> Term { let trace_term = if tracing { Term::Error.trace(Term::string( "List/Tuple/Constr contains more items than expected", )) } else { Term::Error }; if let Some((first, names)) = names.split_first() { let (current_tipo, tipos) = tipos.split_first().unwrap(); let head_list = if matches!(current_tipo.get_uplc_type(), UplcType::Pair(_, _)) && is_list_accessor { Term::head_list().apply(Term::var(format!( "tail_index_{}_{}", current_index, id_list[current_index] ))) } else { convert_data_to_type( Term::head_list().apply(Term::var(format!( "tail_index_{}_{}", current_index, id_list[current_index] ))), ¤t_tipo.to_owned(), ) }; if names.len() == 1 && tail { if first == "_" && names[0] == "_" { term.lambda("_") } else if first == "_" { term.lambda(names[0].clone()) .apply(Term::tail_list().apply(Term::var(format!( "tail_index_{}_{}", current_index, id_list[current_index] )))) .lambda(format!( "tail_index_{}_{}", current_index, id_list[current_index] )) } else if names[0] == "_" { term.lambda(first.clone()).apply(head_list).lambda(format!( "tail_index_{}_{}", current_index, id_list[current_index] )) } else { term.lambda(names[0].clone()) .apply(Term::tail_list().apply(Term::var(format!( "tail_index_{}_{}", current_index, id_list[current_index] )))) .lambda(first.clone()) .apply(head_list) .lambda(format!( "tail_index_{}_{}", current_index, id_list[current_index] )) } } else if names.is_empty() { if first == "_" { if check_last_item { Term::tail_list() .apply(Term::var(format!( "tail_index_{}_{}", current_index, id_list[current_index] ))) .delayed_choose_list(term, trace_term) } else { term } .lambda(if check_last_item { format!("tail_index_{}_{}", current_index, id_list[current_index]) } else { "_".to_string() }) } else { if check_last_item { Term::tail_list() .apply(Term::var(format!( "tail_index_{}_{}", current_index, id_list[current_index] ))) .delayed_choose_list(term, trace_term) } else { term } .lambda(first.clone()) .apply(head_list) .lambda(format!( "tail_index_{}_{}", current_index, id_list[current_index] )) } } else if first == "_" { let mut list_access_inner = list_access_to_uplc( names, id_list, tail, current_index + 1, term, tipos.to_owned(), check_last_item, is_list_accessor, tracing, ); list_access_inner = match &list_access_inner { Term::Lambda { parameter_name, body, } => { if ¶meter_name.text == "_" { body.as_ref().clone() } else { list_access_inner .apply(Term::tail_list().apply(Term::var(format!( "tail_index_{}_{}", current_index, id_list[current_index] )))) .lambda(format!( "tail_index_{}_{}", current_index, id_list[current_index] )) } } _ => list_access_inner, }; match &list_access_inner { Term::Lambda { .. } => list_access_inner, _ => list_access_inner.lambda("_"), } } else { let mut list_access_inner = list_access_to_uplc( names, id_list, tail, current_index + 1, term, tipos.to_owned(), check_last_item, is_list_accessor, tracing, ); list_access_inner = match &list_access_inner { Term::Lambda { parameter_name, body, } => { if ¶meter_name.text == "_" { body.as_ref() .clone() .lambda(first.clone()) .apply(head_list) .lambda(format!( "tail_index_{}_{}", current_index, id_list[current_index] )) } else { list_access_inner .apply(Term::tail_list().apply(Term::var(format!( "tail_index_{}_{}", current_index, id_list[current_index] )))) .lambda(first.clone()) .apply(head_list) .lambda(format!( "tail_index_{}_{}", current_index, id_list[current_index] )) } } _ => list_access_inner .lambda(first.clone()) .apply(head_list) .lambda(format!( "tail_index_{}_{}", current_index, id_list[current_index] )), }; list_access_inner } } else { term } } pub fn check_when_pattern_needs( pattern: &Pattern>, clause_properties: &mut ClauseProperties, ) { match pattern { Pattern::Var { .. } => { *clause_properties.needs_constr_var() = true; } Pattern::List { elements, tail, .. } => { *clause_properties.needs_constr_var() = true; *clause_properties.is_complex_clause() = true; for element in elements { check_when_pattern_needs(element, clause_properties); } if let Some(tail) = tail { check_when_pattern_needs(tail, clause_properties); } } Pattern::Tuple { elems, .. } => { *clause_properties.needs_constr_var() = true; *clause_properties.is_complex_clause() = true; for element in elems { check_when_pattern_needs(element, clause_properties); } } Pattern::Int { .. } => { *clause_properties.needs_constr_var() = true; *clause_properties.is_complex_clause() = true; } Pattern::Constructor { arguments, .. } => { *clause_properties.needs_constr_var() = true; *clause_properties.is_complex_clause() = true; for argument in arguments { check_when_pattern_needs(&argument.value, clause_properties); } } Pattern::Discard { .. } => { *clause_properties.needs_constr_var() = true; } Pattern::Assign { pattern, .. } => { *clause_properties.needs_constr_var() = true; check_when_pattern_needs(pattern, clause_properties) } } } pub fn constants_ir(literal: &Constant, ir_stack: &mut AirStack) { match literal { Constant::Int { value, .. } => { ir_stack.integer(value.clone()); } Constant::String { value, .. } => { ir_stack.string(value.clone()); } Constant::ByteArray { bytes, .. } => { ir_stack.byte_array(bytes.clone()); } }; } pub fn match_ir_for_recursion( ir: Air, insert_var_vec: &mut Vec<(usize, Air)>, function_access_key: &FunctionAccessKey, index: usize, ) { if let Air::Var { scope, constructor, variant_name, .. } = ir { if let ValueConstructorVariant::ModuleFn { name: func_name, module, .. } = constructor.clone().variant { let var_func_access = FunctionAccessKey { module_name: module, function_name: func_name.clone(), variant_name: variant_name.clone(), }; if function_access_key.clone() == var_func_access { insert_var_vec.push(( index, Air::Var { scope, constructor, name: func_name, variant_name, }, )); } } } } pub fn find_and_replace_generics(tipo: &mut Arc, mono_types: &IndexMap>) { if let Some(id) = tipo.get_generic() { // If a generic does not have a type we know of // like a None in option then just use same type *tipo = mono_types.get(&id).unwrap_or(tipo).clone(); } else if tipo.is_generic() { match &**tipo { Type::App { args, public, module, name, } => { let mut new_args = vec![]; for arg in args { let mut arg = arg.clone(); find_and_replace_generics(&mut arg, mono_types); new_args.push(arg); } let t = Type::App { args: new_args, public: *public, module: module.clone(), name: name.clone(), }; *tipo = t.into(); } Type::Fn { args, ret } => { let mut new_args = vec![]; for arg in args { let mut arg = arg.clone(); find_and_replace_generics(&mut arg, mono_types); new_args.push(arg); } let mut ret = ret.clone(); find_and_replace_generics(&mut ret, mono_types); let t = Type::Fn { args: new_args, ret, }; *tipo = t.into(); } Type::Tuple { elems } => { let mut new_elems = vec![]; for elem in elems { let mut elem = elem.clone(); find_and_replace_generics(&mut elem, mono_types); new_elems.push(elem); } let t = Type::Tuple { elems: new_elems }; *tipo = t.into(); } Type::Var { tipo: var_tipo } => { let var_type = var_tipo.as_ref().borrow().clone(); let var_tipo = match var_type { TypeVar::Link { tipo } => { let mut tipo = tipo; find_and_replace_generics(&mut tipo, mono_types); tipo } TypeVar::Generic { .. } | TypeVar::Unbound { .. } => unreachable!(), }; *tipo = var_tipo; } }; } } pub fn get_generic_id_and_type(tipo: &Type, param: &Type) -> Vec<(u64, Arc)> { let mut generics_ids = vec![]; if let Some(id) = tipo.get_generic() { generics_ids.push((id, param.clone().into())); return generics_ids; } for (tipo, param_type) in tipo .get_inner_types() .iter() .zip(param.get_inner_types().iter()) { generics_ids.append(&mut get_generic_id_and_type(tipo, param_type)); } generics_ids } pub fn get_variant_name(new_name: &mut String, t: &Arc) { new_name.push_str(&if t.is_string() { "_string".to_string() } else if t.is_int() { "_int".to_string() } else if t.is_bool() { "_bool".to_string() } else if t.is_bytearray() { "_bytearray".to_string() } else if t.is_map() { let mut full_type = "_map".to_string(); let pair_type = &t.get_inner_types()[0]; let fst_type = &pair_type.get_inner_types()[0]; let snd_type = &pair_type.get_inner_types()[1]; get_variant_name(&mut full_type, fst_type); get_variant_name(&mut full_type, snd_type); full_type } else if t.is_list() { let mut full_type = "_list".to_string(); let list_type = &t.get_inner_types()[0]; get_variant_name(&mut full_type, list_type); full_type } else if t.is_tuple() { let mut full_type = "_tuple".to_string(); let inner_types = t.get_inner_types(); for arg_type in inner_types { get_variant_name(&mut full_type, &arg_type); } full_type } else if t.is_unbound() { "_unbound".to_string() } else { let full_type = "_data".to_string(); if t.is_generic() { panic!("FOUND A POLYMORPHIC TYPE. EXPECTED MONOMORPHIC TYPE"); } full_type }); } pub fn convert_constants_to_data(constants: Vec>) -> Vec { let mut new_constants = vec![]; for constant in constants { let constant = match constant.as_ref() { UplcConstant::Integer(i) => UplcConstant::Data(PlutusData::BigInt(to_pallas_bigint(i))), UplcConstant::ByteString(b) => { UplcConstant::Data(PlutusData::BoundedBytes(b.clone().try_into().unwrap())) } UplcConstant::String(s) => UplcConstant::Data(PlutusData::BoundedBytes( s.as_bytes().to_vec().try_into().unwrap(), )), UplcConstant::Bool(b) => UplcConstant::Data(PlutusData::Constr(Constr { tag: convert_constr_to_tag((*b).into()).unwrap_or(ANY_TAG), any_constructor: convert_constr_to_tag((*b).into()) .map_or(Some((*b).into()), |_| None), fields: vec![], })), UplcConstant::ProtoList(list_type, constants) => { if matches!(list_type, UplcType::Pair(_, _)) { let inner_constants = constants .iter() .cloned() .map(|pair| match pair { UplcConstant::ProtoPair(_, _, left, right) => { let inner_constants = vec![left, right]; let inner_constants = convert_constants_to_data(inner_constants) .into_iter() .map(|constant| match constant { UplcConstant::Data(d) => d, _ => todo!(), }) .collect_vec(); (inner_constants[0].clone(), inner_constants[1].clone()) } _ => unreachable!(), }) .collect_vec(); UplcConstant::Data(PlutusData::Map(KeyValuePairs::Def(inner_constants))) } else { let inner_constants = convert_constants_to_data(constants.iter().cloned().map(Rc::new).collect()) .into_iter() .map(|constant| match constant { UplcConstant::Data(d) => d, _ => todo!(), }) .collect_vec(); UplcConstant::Data(PlutusData::Array(inner_constants)) } } UplcConstant::ProtoPair(_, _, left, right) => { let inner_constants = vec![left.clone(), right.clone()]; let inner_constants = convert_constants_to_data(inner_constants) .into_iter() .map(|constant| match constant { UplcConstant::Data(d) => d, _ => todo!(), }) .collect_vec(); UplcConstant::Data(PlutusData::Array(vec![ inner_constants[0].clone(), inner_constants[1].clone(), ])) } d @ UplcConstant::Data(_) => d.clone(), UplcConstant::Unit => UplcConstant::Data(PlutusData::Constr(Constr { tag: convert_constr_to_tag(0).unwrap(), any_constructor: None, fields: vec![], })), }; new_constants.push(constant); } new_constants } pub fn wrap_validator_args(term: Term, arguments: &[TypedArg]) -> Term { let mut term = term; for arg in arguments.iter().rev() { if !matches!(arg.tipo.get_uplc_type(), UplcType::Data) { term = term .lambda(arg.arg_name.get_variable_name().unwrap_or("_")) .apply(convert_data_to_type( Term::var(arg.arg_name.get_variable_name().unwrap_or("_")), &arg.tipo, )); } term = term.lambda(arg.arg_name.get_variable_name().unwrap_or("_")) } term } pub fn wrap_as_multi_validator(spend: Term, mint: Term) -> Term { Term::equals_integer() .apply(Term::integer(0.into())) .apply(Term::var(CONSTR_INDEX_EXPOSER).apply(Term::var("__second_arg"))) .delayed_if_else( mint.apply(Term::var("__first_arg")) .apply(Term::var("__second_arg")), spend.apply(Term::var("__first_arg")).apply( Term::head_list() .apply(Term::var(CONSTR_FIELDS_EXPOSER).apply(Term::var("__second_arg"))), ), ) .lambda("__second_arg") .lambda("__first_arg") } pub fn monomorphize( ir: Vec, mono_types: IndexMap>, full_type: &Arc, data_types: &IndexMap, ) -> (String, Vec) { let mut new_air = ir.clone(); let mut new_name = String::new(); let mut needs_variant = false; for (index, ir) in ir.into_iter().enumerate() { match ir { Air::Var { constructor, scope, name, .. } => { if constructor.tipo.is_generic() { let mut tipo = constructor.tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); let mut variant = String::new(); let mut constructor = constructor.clone(); constructor.tipo = tipo; if let Type::Fn { args, ret } = &*constructor.tipo { if matches!( constructor.variant, ValueConstructorVariant::ModuleFn { .. } ) { for arg in args { let mut arg = arg.clone(); replace_opaque_type(&mut arg, data_types); get_variant_name(&mut variant, &arg); } let mut ret = ret.clone(); replace_opaque_type(&mut ret, data_types); get_variant_name(&mut variant, &ret); } } new_air[index] = Air::Var { scope, constructor, name, variant_name: variant, }; needs_variant = true; } } Air::List { tipo, scope, count, tail, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::List { scope, count, tipo, tail, }; needs_variant = true; } } Air::ListAccessor { scope, tipo, names, tail, check_last_item, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::ListAccessor { scope, names, tipo, tail, check_last_item, }; needs_variant = true; } } Air::ListExpose { scope, tipo, tail_head_names, tail, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::ListExpose { scope, tail_head_names, tipo, tail, }; needs_variant = true; } } Air::BinOp { scope, name, tipo } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::BinOp { scope, name, tipo }; needs_variant = true; } } Air::Builtin { scope, func, tipo, count, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::Builtin { scope, func, tipo, count, }; needs_variant = true; } } Air::UnWrapData { scope, tipo } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::UnWrapData { scope, tipo }; needs_variant = true; } } Air::WrapData { scope, tipo } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::WrapData { scope, tipo }; needs_variant = true; } } Air::When { scope, tipo, subject_name, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::When { scope, subject_name, tipo, }; needs_variant = true; } } Air::Clause { scope, tipo, subject_name, complex_clause, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::Clause { scope, tipo, subject_name, complex_clause, }; needs_variant = true; } } Air::ListClause { scope, tipo, tail_name, complex_clause, next_tail_name, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::ListClause { scope, tipo, tail_name, complex_clause, next_tail_name, }; needs_variant = true; } } Air::TupleClause { scope, tipo, indices, predefined_indices, subject_name, count, complex_clause, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::TupleClause { scope, tipo, indices, predefined_indices, subject_name, count, complex_clause, }; needs_variant = true; } } Air::ClauseGuard { tipo, scope, subject_name, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::ClauseGuard { scope, subject_name, tipo, }; needs_variant = true; } } Air::ListClauseGuard { scope, tipo, tail_name, next_tail_name, inverse, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::ListClauseGuard { scope, tipo, tail_name, next_tail_name, inverse, }; needs_variant = true; } } Air::Tuple { scope, tipo, count } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::Tuple { scope, tipo, count }; needs_variant = true; } } Air::TupleIndex { scope, tipo, tuple_index, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::TupleIndex { scope, tipo, tuple_index, }; needs_variant = true; } } Air::ErrorTerm { scope, tipo } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::ErrorTerm { scope, tipo }; needs_variant = true; } } Air::Trace { scope, tipo } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::Trace { scope, tipo }; needs_variant = true; } } Air::Record { scope, tag: constr_index, tipo, count, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::Record { scope, tipo, tag: constr_index, count, }; needs_variant = true; } } Air::RecordAccess { scope, record_index, tipo, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::RecordAccess { scope, record_index, tipo, }; needs_variant = true; } } Air::FieldsExpose { scope, indices, check_last_item, } => { let mut new_indices = vec![]; for (ind, name, tipo) in indices { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); needs_variant = true; new_indices.push((ind, name, tipo)); } else { new_indices.push((ind, name, tipo)); } } new_air[index] = Air::FieldsExpose { scope, indices: new_indices, check_last_item, }; } Air::RecordUpdate { scope, highest_index, indices, tipo, } => { let mut new_indices = vec![]; let mut tipo = tipo.clone(); for (ind, tipo) in indices { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); needs_variant = true; new_indices.push((ind, tipo)); } else { new_indices.push((ind, tipo)); } } if tipo.is_generic() { find_and_replace_generics(&mut tipo, &mono_types); } new_air[index] = Air::RecordUpdate { scope, highest_index, indices: new_indices, tipo, }; } Air::TupleAccessor { scope, names, tipo, check_last_item, } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::TupleAccessor { scope, names, tipo, check_last_item, }; needs_variant = true; } } Air::Call { scope, count, tipo } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::Call { scope, count, tipo }; needs_variant = true; } } Air::If { scope, tipo } => { if tipo.is_generic() { let mut tipo = tipo.clone(); find_and_replace_generics(&mut tipo, &mono_types); new_air[index] = Air::If { scope, tipo }; needs_variant = true; } } _ => {} } } if let Type::Fn { args, ret } = &**full_type { if needs_variant { for arg in args { let mut arg = arg.clone(); replace_opaque_type(&mut arg, data_types); get_variant_name(&mut new_name, &arg); } let mut ret = ret.clone(); replace_opaque_type(&mut ret, data_types); get_variant_name(&mut new_name, &ret) } } (new_name, new_air) } #[allow(clippy::too_many_arguments)] pub fn handle_func_dependencies( dependencies_ir: &mut Vec, function_component: &FuncComponents, func_components: &IndexMap, defined_functions: &mut IndexMap, func_index_map: &IndexMap, func_scope: &Scope, to_be_defined: &mut IndexMap, id_gen: Rc, ) { let function_component = function_component.clone(); let mut function_dependency_order = function_component .dependencies .iter() .unique() .cloned() .collect_vec(); let mut dependency_map = IndexMap::new(); let mut dependency_vec = vec![]; // deal with function dependencies by sorting order in which we pop them. while let Some(dependency) = function_dependency_order.pop() { let depend_comp = func_components.get(&dependency).unwrap(); if dependency_map.contains_key(&dependency) { dependency_map.shift_remove(&dependency); } function_dependency_order.extend(depend_comp.dependencies.clone()); dependency_map.insert(dependency, ()); } dependency_vec.extend(dependency_map.keys().cloned()); dependency_vec.reverse(); while let Some(dependency) = dependency_vec.pop() { let func_component_dep = func_components.get(&dependency); if defined_functions.contains_key(&dependency) { continue; } let Some(depend_comp) = func_component_dep else {continue}; let dep_scope = func_index_map .get(&dependency) .unwrap_or_else(|| unreachable!()); if (dep_scope.common_ancestor(func_scope) == *func_scope && !depend_comp.args.is_empty()) || (function_component.args.is_empty() && !depend_comp.args.is_empty()) { let mut recursion_ir = vec![]; handle_recursion_ir(&dependency, depend_comp, &mut recursion_ir); let mut temp_stack = AirStack { id_gen: id_gen.clone(), scope: func_scope.clone(), air: vec![], }; let recursion_stack = AirStack { id_gen: id_gen.clone(), scope: func_scope.clone(), air: recursion_ir, }; if depend_comp.is_code_gen_func { temp_stack = recursion_stack; } else { temp_stack.define_func( dependency.function_name.clone(), dependency.module_name.clone(), dependency.variant_name.clone(), depend_comp.args.clone(), depend_comp.recursive, recursion_stack, ); } let mut temp_ir = temp_stack.complete(); temp_ir.append(dependencies_ir); *dependencies_ir = temp_ir; if dep_scope.common_ancestor(func_scope) == *func_scope { defined_functions.insert(dependency, ()); } } else if depend_comp.args.is_empty() { to_be_defined.insert(dependency, ()); } } } pub fn handle_recursion_ir( func_key: &FunctionAccessKey, func_comp: &FuncComponents, recursion_ir: &mut Vec, ) { let mut insert_var_vec = vec![]; for (index, ir) in func_comp.ir.iter().enumerate().rev() { match_ir_for_recursion( ir.clone(), &mut insert_var_vec, &FunctionAccessKey { function_name: func_key.function_name.clone(), module_name: func_key.module_name.clone(), variant_name: func_key.variant_name.clone(), }, index, ); } *recursion_ir = func_comp.ir.clone(); // Deals with self recursive function for (index, ir) in insert_var_vec.clone() { recursion_ir.insert(index, ir); let current_call = recursion_ir[index - 1].clone(); match current_call { Air::Call { scope, count, tipo } => { recursion_ir[index - 1] = Air::Call { scope, count: count + 1, tipo, } } _ => unreachable!("Will support not using call right away later."), } } } pub fn lookup_data_type_by_tipo( data_types: &IndexMap, tipo: &Type, ) -> Option>> { match tipo { Type::Fn { ret, .. } => match ret.as_ref() { Type::App { module, name, .. } => { let data_type_key = DataTypeKey { module_name: module.clone(), defined_type: name.clone(), }; data_types.get(&data_type_key).map(|item| (*item).clone()) } _ => None, }, Type::App { module, name, .. } => { let data_type_key = DataTypeKey { module_name: module.clone(), defined_type: name.clone(), }; data_types.get(&data_type_key).map(|item| (*item).clone()) } Type::Var { tipo } => { if let TypeVar::Link { tipo } = &*tipo.borrow() { lookup_data_type_by_tipo(data_types, tipo) } else { None } } _ => None, } } pub fn check_replaceable_opaque_type( t: &Arc, data_types: &IndexMap, ) -> bool { let data_type = lookup_data_type_by_tipo(data_types, t); if let Some(data_type) = data_type { let data_type_args = data_type.constructors[0].arguments.clone(); data_type_args.len() == 1 && data_type.opaque && data_type.constructors.len() == 1 } else { false } } pub fn replace_opaque_type(t: &mut Arc, data_types: &IndexMap) { if check_replaceable_opaque_type(t, data_types) && matches!(&**t, Type::App { .. }) { let data_type = lookup_data_type_by_tipo(data_types, t).unwrap(); let new_type_fields = data_type.typed_parameters; let mut mono_types: IndexMap> = IndexMap::new(); for (tipo, param) in new_type_fields.iter().zip(t.arg_types().unwrap()) { let mut map = mono_types.into_iter().collect_vec(); map.append(&mut get_generic_id_and_type(tipo, ¶m)); mono_types = map.into_iter().collect(); } let mut generic_type = data_type.constructors[0].arguments[0].tipo.clone(); find_and_replace_generics(&mut generic_type, &mono_types); replace_opaque_type(&mut generic_type, data_types); *t = generic_type; } else { match (**t).clone() { Type::App { public, module, name, args, } => { let mut new_args = vec![]; for arg in args { let mut new_arg_type = arg.clone(); replace_opaque_type(&mut new_arg_type, data_types); new_args.push(new_arg_type); } *t = Type::App { public, module, name, args: new_args, } .into(); } Type::Fn { args, ret } => { let mut new_args = vec![]; for arg in args { let mut new_arg_type = arg.clone(); replace_opaque_type(&mut new_arg_type, data_types); new_args.push(new_arg_type); } let mut new_ret = ret; replace_opaque_type(&mut new_ret, data_types); *t = Type::Fn { args: new_args, ret: new_ret, } .into(); } Type::Var { tipo } => { if let TypeVar::Link { tipo } = &*tipo.borrow() { let mut new_type = tipo.clone(); replace_opaque_type(&mut new_type, data_types); *t = new_type; } } Type::Tuple { elems } => { let mut new_elems = vec![]; for arg in elems { let mut new_arg_type = arg.clone(); replace_opaque_type(&mut new_arg_type, data_types); new_elems.push(new_arg_type); } *t = Type::Tuple { elems: new_elems }.into(); } } } } pub fn handle_clause_guard( clause_guard: &ClauseGuard>, clause_guard_stack: &mut AirStack, ) { match clause_guard { ClauseGuard::Not { value, .. } => { let mut value_stack = clause_guard_stack.empty_with_scope(); handle_clause_guard(value, &mut value_stack); clause_guard_stack.unop(UnOp::Not, value_stack); } ClauseGuard::Equals { left, right, .. } => { let mut left_stack = clause_guard_stack.empty_with_scope(); let mut right_stack = clause_guard_stack.empty_with_scope(); handle_clause_guard(left, &mut left_stack); handle_clause_guard(right, &mut right_stack); clause_guard_stack.binop(BinOp::Eq, left.tipo(), left_stack, right_stack); } ClauseGuard::NotEquals { left, right, .. } => { let mut left_stack = clause_guard_stack.empty_with_scope(); let mut right_stack = clause_guard_stack.empty_with_scope(); handle_clause_guard(left, &mut left_stack); handle_clause_guard(right, &mut right_stack); clause_guard_stack.binop(BinOp::NotEq, left.tipo(), left_stack, right_stack); } ClauseGuard::GtInt { left, right, .. } => { let mut left_stack = clause_guard_stack.empty_with_scope(); let mut right_stack = clause_guard_stack.empty_with_scope(); handle_clause_guard(left, &mut left_stack); handle_clause_guard(right, &mut right_stack); clause_guard_stack.binop(BinOp::GtInt, left.tipo(), left_stack, right_stack); } ClauseGuard::GtEqInt { left, right, .. } => { let mut left_stack = clause_guard_stack.empty_with_scope(); let mut right_stack = clause_guard_stack.empty_with_scope(); handle_clause_guard(left, &mut left_stack); handle_clause_guard(right, &mut right_stack); clause_guard_stack.binop(BinOp::GtEqInt, left.tipo(), left_stack, right_stack); } ClauseGuard::LtInt { left, right, .. } => { let mut left_stack = clause_guard_stack.empty_with_scope(); let mut right_stack = clause_guard_stack.empty_with_scope(); handle_clause_guard(left, &mut left_stack); handle_clause_guard(right, &mut right_stack); clause_guard_stack.binop(BinOp::LtInt, left.tipo(), left_stack, right_stack); } ClauseGuard::LtEqInt { left, right, .. } => { let mut left_stack = clause_guard_stack.empty_with_scope(); let mut right_stack = clause_guard_stack.empty_with_scope(); handle_clause_guard(left, &mut left_stack); handle_clause_guard(right, &mut right_stack); clause_guard_stack.binop(BinOp::LtEqInt, left.tipo(), left_stack, right_stack); } ClauseGuard::Or { left, right, .. } => { let mut left_stack = clause_guard_stack.empty_with_scope(); let mut right_stack = clause_guard_stack.empty_with_scope(); handle_clause_guard(left, &mut left_stack); handle_clause_guard(right, &mut right_stack); clause_guard_stack.binop(BinOp::Or, left.tipo(), left_stack, right_stack); } ClauseGuard::And { left, right, .. } => { let mut left_stack = clause_guard_stack.empty_with_scope(); let mut right_stack = clause_guard_stack.empty_with_scope(); handle_clause_guard(left, &mut left_stack); handle_clause_guard(right, &mut right_stack); clause_guard_stack.binop(BinOp::And, left.tipo(), left_stack, right_stack); } ClauseGuard::Var { tipo, name, .. } => { clause_guard_stack.local_var(tipo.clone(), name); } ClauseGuard::Constant(constant) => { constants_ir(constant, clause_guard_stack); } } } pub fn apply_builtin_forces(mut term: Term, force_count: u32) -> Term { for _ in 0..force_count { term = term.force(); } term } pub fn undata_builtin( func: &DefaultFunction, count: usize, tipo: &Arc, args: Vec>, ) -> Term { let mut term: Term = (*func).into(); term = apply_builtin_forces(term, func.force_count()); for arg in args { term = term.apply(arg); } let temp_var = "__item_x"; if count == 0 { term = term.apply(Term::var(temp_var)); } term = convert_data_to_type(term, tipo); if count == 0 { term = term.lambda(temp_var); } term } pub fn to_data_builtin( func: &DefaultFunction, count: usize, tipo: &Arc, mut args: Vec>, ) -> Term { let mut term: Term = (*func).into(); term = apply_builtin_forces(term, func.force_count()); if count == 0 { assert!(args.is_empty()); for arg_index in 0..func.arity() { let temp_var = format!("__item_index_{}", arg_index); args.push(Term::var(temp_var)) } } for (index, arg) in args.into_iter().enumerate() { if index == 0 || matches!(func, DefaultFunction::MkPairData) { term = term.apply(convert_type_to_data(arg, tipo)); } else { term = term.apply(arg); } } if count == 0 { for arg_index in (0..func.arity()).rev() { let temp_var = format!("__item_index_{}", arg_index); term = term.lambda(temp_var); } } term } pub fn special_case_builtin( func: &DefaultFunction, count: usize, mut args: Vec>, ) -> Term { match func { DefaultFunction::IfThenElse | DefaultFunction::ChooseList | DefaultFunction::ChooseData | DefaultFunction::Trace => { let mut term: Term = (*func).into(); term = apply_builtin_forces(term, func.force_count()); if count == 0 { assert!(args.is_empty()); for arg_index in 0..func.arity() { let temp_var = format!("__item_index_{}", arg_index); args.push(Term::var(temp_var)) } } for (index, arg) in args.into_iter().enumerate() { if index == 0 { term = term.apply(arg); } else { term = term.apply(arg.delay()); } } term = term.force(); if count == 0 { for arg_index in (0..func.arity()).rev() { let temp_var = format!("__item_index_{}", arg_index); term = term.lambda(temp_var); } } term } DefaultFunction::ChooseUnit => { if count == 0 { unimplemented!("Honestly, why are you doing this?") } else { let term = args.pop().unwrap(); let unit = args.pop().unwrap(); term.lambda("_").apply(unit) } } DefaultFunction::UnConstrData => { let mut term: Term = (*func).into(); let temp_tuple = "__unconstr_tuple"; for arg in args { term = term.apply(arg); } let temp_var = "__item_x"; if count == 0 { term = term.apply(Term::var(temp_var)); } term = Term::mk_pair_data() .apply(Term::i_data().apply(Term::fst_pair().apply(Term::var(temp_tuple)))) .apply(Term::list_data().apply(Term::snd_pair().apply(Term::var(temp_tuple)))) .lambda(temp_tuple) .apply(term); if count == 0 { term = term.lambda(temp_var); } term } _ => unreachable!(), } }