aiken/examples/acceptance_tests/074/lib/tests.ak

318 lines
7.2 KiB
Plaintext

use aiken/bytearray.{from_string}
use aiken/hash.{Hash, Sha2_256, sha2_256}
use aiken/list
use aiken/option.{choice, is_none}
/// Variant of MerkleTree with only hash but without actual value
pub type MerkleTree<a> {
Empty
Leaf { hash: Hash<Sha2_256, ByteArray> }
Node {
hash: Hash<Sha2_256, ByteArray>,
left: MerkleTree<a>,
right: MerkleTree<a>,
}
}
pub type Proof =
List<ProofItem>
pub type ProofItem {
Left { hash: Hash<Sha2_256, ByteArray> }
Right { hash: Hash<Sha2_256, ByteArray> }
}
// Function returning a hash of a given Merkle Tree element
pub fn root_hash(self: MerkleTree<a>) -> Hash<Sha2_256, ByteArray> {
when self is {
Empty ->
#""
Leaf { hash } ->
hash
Node { hash, .. } ->
hash
}
}
/// Function atests whether two Merkle Tress are equal, this is the case when their root hashes match.
pub fn is_equal(left: MerkleTree<a>, right: MerkleTree<a>) -> Bool {
root_hash(left) == root_hash(right)
}
/// Function returns a total numbers of leaves in the tree.
pub fn size(self: MerkleTree<a>) -> Int {
when self is {
Empty ->
0
Leaf { .. } ->
1
Node { left, right, .. } ->
size(left) + size(right)
}
}
fn combine_hash(
left: Hash<Sha2_256, a>,
right: Hash<Sha2_256, a>,
) -> Hash<Sha2_256, a> {
sha2_256(bytearray.concat(left, right))
}
/// Function that returns whether merkle tree has any elements
pub fn is_empty(self: MerkleTree<a>) -> Bool {
when self is {
Empty ->
True
_ ->
False
}
}
fn do_proof(
self: MerkleTree<a>,
item_hash: Hash<Sha2_256, ByteArray>,
proof: Proof,
serialise_fn: fn(a) -> ByteArray,
) -> Option<Proof> {
when self is {
Empty ->
None
Leaf { hash } ->
if hash == item_hash {
Some(proof)
} else {
None
}
Node { left, right, .. } -> {
let rh =
root_hash(right)
let lh =
root_hash(left)
let go_left: Option<Proof> =
do_proof(
left,
item_hash,
list.push(proof, Right { hash: rh }),
serialise_fn,
)
let go_right: Option<Proof> =
do_proof(
right,
item_hash,
list.push(proof, Left { hash: lh }),
serialise_fn,
)
choice([go_left, go_right])
}
}
}
/// Construct a membership 'Proof' from an element and a 'MerkleTree'. Returns
/// 'None' if the element isn't a member of the tree to begin with.
/// Note function will return Some([]) in case root of the tree is also it's only one and only element
pub fn get_proof(
self: MerkleTree<a>,
item: a,
serialise_fn: fn(a) -> ByteArray,
) -> Option<Proof> {
let empty: Proof =
[]
do_proof(self, sha2_256(serialise_fn(item)), empty, serialise_fn)
}
fn do_from_list(
items: List<a>,
len: Int,
serialise_fn: fn(a) -> ByteArray,
) -> MerkleTree<a> {
when items is {
[] ->
Empty
[item] -> {
let hashed_item =
sha2_256(serialise_fn(item))
Leaf { hash: hashed_item }
}
all -> {
let cutoff: Int =
len / 2
let left =
all
|> list.take(cutoff)
|> do_from_list(cutoff, serialise_fn)
let right =
all
|> list.drop(cutoff)
|> do_from_list(len - cutoff, serialise_fn)
let hash =
combine_hash(root_hash(left), root_hash(right))
Node { hash, left, right }
}
}
}
/// Construct a 'MerkleTree' from a list of elements.
/// Note that, while this operation is doable on-chain, it is expensive and
/// preferably done off-chain.
pub fn from_list(
items: List<a>,
serialise_fn: fn(a) -> ByteArray,
) -> MerkleTree<a> {
do_from_list(items, list.length(items), serialise_fn)
}
fn do_from_hashes_list(
items: List<Hash<Sha2_256, a>>,
len: Int,
) -> MerkleTree<a> {
when items is {
[] ->
Empty
[hashed_item] ->
Leaf { hash: hashed_item }
all -> {
let cutoff: Int =
len / 2
let left =
all
|> list.take(cutoff)
|> do_from_hashes_list(cutoff)
let right =
all
|> list.drop(cutoff)
|> do_from_hashes_list(len - cutoff)
let hash =
combine_hash(root_hash(left), root_hash(right))
Node { hash, left, right }
}
}
}
/// Construct a 'MerkleTree' from a list of hashes.
/// Note that, while this operation is doable on-chain, it is expensive and
/// preferably done off-chain.
pub fn from_hashes_list(items: List<Hash<Sha2_256, a>>) -> MerkleTree<a> {
do_from_hashes_list(items, list.length(items))
}
// Check whether a hashed element is part of a 'MerkleTree' using only its root hash
// and a 'Proof'. The proof is guaranteed to be in log(n) of the size of the
// tree, which is why we are interested in such data-structure in the first
// place.
pub fn member_from_hash(
item_hash: Hash<Sha2_256, a>,
root_hash: Hash<Sha2_256, a>,
proof: Proof,
serialise_fn: fn(a) -> ByteArray,
) -> Bool {
when proof is {
[] ->
root_hash == item_hash
[head, ..tail] ->
when head is {
Left { hash: l } ->
member_from_hash(
combine_hash(l, item_hash),
root_hash,
tail,
serialise_fn,
)
Right { hash: r } ->
member_from_hash(
combine_hash(item_hash, r),
root_hash,
tail,
serialise_fn,
)
}
}
}
// Check whether an element is part of a 'MerkleTree' using only its root hash
// and a 'Proof'.
pub fn member(
item: a,
root_hash: Hash<Sha2_256, ByteArray>,
proof: Proof,
serialise_fn: fn(a) -> ByteArray,
) -> Bool {
let item_hash =
sha2_256(serialise_fn(item))
member_from_hash(item_hash, root_hash, proof, serialise_fn)
}
pub fn member_from_tree(
tree: MerkleTree<a>,
item: a,
serialise_fn: fn(a) -> ByteArray,
) -> Bool {
let proof: Option<Proof> =
get_proof(tree, item, serialise_fn)
let rh =
root_hash(tree)
when proof is {
Some(p) ->
member(item, rh, p, serialise_fn)
None ->
False
}
}
// needed only for tests
fn create_string_item_serialise_fn() -> fn(String) -> ByteArray {
fn(x: String) { from_string(x) }
}
test from_hashes_list_5() {
let dog =
@"dog"
let cat =
@"cat"
let mouse =
@"mouse"
let horse =
@"horse"
let serialise_fn =
create_string_item_serialise_fn()
let items =
[dog, cat, mouse, horse]
let hashes_items =
list.map(items, fn(item) { sha2_256(serialise_fn(item)) })
let mt =
from_hashes_list(hashes_items)
let left_node_hash =
sha2_256(
bytearray.concat(sha2_256(serialise_fn(dog)), sha2_256(serialise_fn(cat))),
)
let right_node_hash =
sha2_256(
bytearray.concat(
sha2_256(serialise_fn(mouse)),
sha2_256(serialise_fn(horse)),
),
)
let root_hash =
sha2_256(bytearray.concat(left_node_hash, right_node_hash))
Node {
hash: root_hash,
left: Node {
hash: left_node_hash,
left: Leaf { hash: sha2_256(serialise_fn(dog)) },
right: Leaf { hash: sha2_256(serialise_fn(cat)) },
},
right: Node {
hash: right_node_hash,
left: Leaf { hash: sha2_256(serialise_fn(mouse)) },
right: Leaf { hash: sha2_256(serialise_fn(horse)) },
},
} == mt
}