aiken/crates/uplc/src/machine/runtime.rs

1524 lines
50 KiB
Rust

use std::{mem::size_of, ops::Deref, rc::Rc};
use num_bigint::BigInt;
use num_integer::Integer;
use once_cell::sync::Lazy;
use pallas::ledger::primitives::babbage::{Language, PlutusData};
use crate::{
ast::{Constant, Data, Type},
builtins::DefaultFunction,
plutus_data_to_bytes,
};
use super::{
cost_model::{BuiltinCosts, ExBudget},
value::{from_pallas_bigint, to_pallas_bigint},
Error, Value,
};
static SCALAR_PERIOD: Lazy<BigInt> = Lazy::new(|| {
BigInt::from_bytes_be(
num_bigint::Sign::Plus,
&[
0x73, 0xed, 0xa7, 0x53, 0x29, 0x9d, 0x7d, 0x48, 0x33, 0x39, 0xd8, 0x08, 0x09, 0xa1,
0xd8, 0x05, 0x53, 0xbd, 0xa4, 0x02, 0xff, 0xfe, 0x5b, 0xfe, 0xff, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x01,
],
)
});
const BLST_P1_COMPRESSED_SIZE: usize = 48;
const BLST_P2_COMPRESSED_SIZE: usize = 96;
//#[derive(std::cmp::PartialEq)]
//pub enum EvalMode {
// Immediate,
// Deferred,
//}
pub enum BuiltinSemantics {
V1,
V2,
}
impl From<&Language> for BuiltinSemantics {
fn from(language: &Language) -> Self {
match language {
Language::PlutusV1 => BuiltinSemantics::V1,
Language::PlutusV2 => BuiltinSemantics::V1,
}
}
}
#[derive(Clone, Debug)]
pub struct BuiltinRuntime {
pub(super) args: Vec<Value>,
fun: DefaultFunction,
pub(super) forces: u32,
}
impl BuiltinRuntime {
pub fn new(fun: DefaultFunction) -> BuiltinRuntime {
Self {
args: vec![],
fun,
forces: 0,
}
}
pub fn is_arrow(&self) -> bool {
self.args.len() != self.fun.arity()
}
pub fn is_ready(&self) -> bool {
self.args.len() == self.fun.arity()
}
pub fn needs_force(&self) -> bool {
self.forces < self.fun.force_count()
}
pub fn consume_force(&mut self) {
self.forces += 1;
}
pub fn call(&self, language: &Language, logs: &mut Vec<String>) -> Result<Value, Error> {
self.fun.call(language.into(), &self.args, logs)
}
pub fn push(&mut self, arg: Value) -> Result<(), Error> {
self.args.push(arg);
Ok(())
}
pub fn to_ex_budget(&self, costs: &BuiltinCosts) -> ExBudget {
costs.to_ex_budget(self.fun, &self.args)
}
}
impl From<DefaultFunction> for BuiltinRuntime {
fn from(fun: DefaultFunction) -> Self {
BuiltinRuntime::new(fun)
}
}
impl DefaultFunction {
pub fn arity(&self) -> usize {
match self {
DefaultFunction::AddInteger => 2,
DefaultFunction::SubtractInteger => 2,
DefaultFunction::MultiplyInteger => 2,
DefaultFunction::DivideInteger => 2,
DefaultFunction::QuotientInteger => 2,
DefaultFunction::RemainderInteger => 2,
DefaultFunction::ModInteger => 2,
DefaultFunction::EqualsInteger => 2,
DefaultFunction::LessThanInteger => 2,
DefaultFunction::LessThanEqualsInteger => 2,
DefaultFunction::AppendByteString => 2,
DefaultFunction::ConsByteString => 2,
DefaultFunction::SliceByteString => 3,
DefaultFunction::LengthOfByteString => 1,
DefaultFunction::IndexByteString => 2,
DefaultFunction::EqualsByteString => 2,
DefaultFunction::LessThanByteString => 2,
DefaultFunction::LessThanEqualsByteString => 2,
DefaultFunction::Sha2_256 => 1,
DefaultFunction::Sha3_256 => 1,
DefaultFunction::Blake2b_224 => 1,
DefaultFunction::Blake2b_256 => 1,
DefaultFunction::Keccak_256 => 1,
DefaultFunction::VerifyEd25519Signature => 3,
DefaultFunction::VerifyEcdsaSecp256k1Signature => 3,
DefaultFunction::VerifySchnorrSecp256k1Signature => 3,
DefaultFunction::AppendString => 2,
DefaultFunction::EqualsString => 2,
DefaultFunction::EncodeUtf8 => 1,
DefaultFunction::DecodeUtf8 => 1,
DefaultFunction::IfThenElse => 3,
DefaultFunction::ChooseUnit => 2,
DefaultFunction::Trace => 2,
DefaultFunction::FstPair => 1,
DefaultFunction::SndPair => 1,
DefaultFunction::ChooseList => 3,
DefaultFunction::MkCons => 2,
DefaultFunction::HeadList => 1,
DefaultFunction::TailList => 1,
DefaultFunction::NullList => 1,
DefaultFunction::ChooseData => 6,
DefaultFunction::ConstrData => 2,
DefaultFunction::MapData => 1,
DefaultFunction::ListData => 1,
DefaultFunction::IData => 1,
DefaultFunction::BData => 1,
DefaultFunction::UnConstrData => 1,
DefaultFunction::UnMapData => 1,
DefaultFunction::UnListData => 1,
DefaultFunction::UnIData => 1,
DefaultFunction::UnBData => 1,
DefaultFunction::EqualsData => 2,
DefaultFunction::SerialiseData => 1,
DefaultFunction::MkPairData => 2,
DefaultFunction::MkNilData => 1,
DefaultFunction::MkNilPairData => 1,
DefaultFunction::Bls12_381_G1_Add => 2,
DefaultFunction::Bls12_381_G1_Neg => 1,
DefaultFunction::Bls12_381_G1_ScalarMul => 2,
DefaultFunction::Bls12_381_G1_Equal => 2,
DefaultFunction::Bls12_381_G1_Compress => 1,
DefaultFunction::Bls12_381_G1_Uncompress => 1,
DefaultFunction::Bls12_381_G1_HashToGroup => 2,
DefaultFunction::Bls12_381_G2_Add => 2,
DefaultFunction::Bls12_381_G2_Neg => 1,
DefaultFunction::Bls12_381_G2_ScalarMul => 2,
DefaultFunction::Bls12_381_G2_Equal => 2,
DefaultFunction::Bls12_381_G2_Compress => 1,
DefaultFunction::Bls12_381_G2_Uncompress => 1,
DefaultFunction::Bls12_381_G2_HashToGroup => 2,
DefaultFunction::Bls12_381_MillerLoop => 2,
DefaultFunction::Bls12_381_MulMlResult => 2,
DefaultFunction::Bls12_381_FinalVerify => 2,
}
}
pub fn force_count(&self) -> u32 {
match self {
DefaultFunction::AddInteger => 0,
DefaultFunction::SubtractInteger => 0,
DefaultFunction::MultiplyInteger => 0,
DefaultFunction::DivideInteger => 0,
DefaultFunction::QuotientInteger => 0,
DefaultFunction::RemainderInteger => 0,
DefaultFunction::ModInteger => 0,
DefaultFunction::EqualsInteger => 0,
DefaultFunction::LessThanInteger => 0,
DefaultFunction::LessThanEqualsInteger => 0,
DefaultFunction::AppendByteString => 0,
DefaultFunction::ConsByteString => 0,
DefaultFunction::SliceByteString => 0,
DefaultFunction::LengthOfByteString => 0,
DefaultFunction::IndexByteString => 0,
DefaultFunction::EqualsByteString => 0,
DefaultFunction::LessThanByteString => 0,
DefaultFunction::LessThanEqualsByteString => 0,
DefaultFunction::Sha2_256 => 0,
DefaultFunction::Sha3_256 => 0,
DefaultFunction::Blake2b_224 => 0,
DefaultFunction::Blake2b_256 => 0,
DefaultFunction::Keccak_256 => 0,
DefaultFunction::VerifyEd25519Signature => 0,
DefaultFunction::VerifyEcdsaSecp256k1Signature => 0,
DefaultFunction::VerifySchnorrSecp256k1Signature => 0,
DefaultFunction::AppendString => 0,
DefaultFunction::EqualsString => 0,
DefaultFunction::EncodeUtf8 => 0,
DefaultFunction::DecodeUtf8 => 0,
DefaultFunction::IfThenElse => 1,
DefaultFunction::ChooseUnit => 1,
DefaultFunction::Trace => 1,
DefaultFunction::FstPair => 2,
DefaultFunction::SndPair => 2,
DefaultFunction::ChooseList => 2,
DefaultFunction::MkCons => 1,
DefaultFunction::HeadList => 1,
DefaultFunction::TailList => 1,
DefaultFunction::NullList => 1,
DefaultFunction::ChooseData => 1,
DefaultFunction::ConstrData => 0,
DefaultFunction::MapData => 0,
DefaultFunction::ListData => 0,
DefaultFunction::IData => 0,
DefaultFunction::BData => 0,
DefaultFunction::UnConstrData => 0,
DefaultFunction::UnMapData => 0,
DefaultFunction::UnListData => 0,
DefaultFunction::UnIData => 0,
DefaultFunction::UnBData => 0,
DefaultFunction::EqualsData => 0,
DefaultFunction::SerialiseData => 0,
DefaultFunction::MkPairData => 0,
DefaultFunction::MkNilData => 0,
DefaultFunction::MkNilPairData => 0,
DefaultFunction::Bls12_381_G1_Add => 0,
DefaultFunction::Bls12_381_G1_Neg => 0,
DefaultFunction::Bls12_381_G1_ScalarMul => 0,
DefaultFunction::Bls12_381_G1_Equal => 0,
DefaultFunction::Bls12_381_G1_Compress => 0,
DefaultFunction::Bls12_381_G1_Uncompress => 0,
DefaultFunction::Bls12_381_G1_HashToGroup => 0,
DefaultFunction::Bls12_381_G2_Add => 0,
DefaultFunction::Bls12_381_G2_Neg => 0,
DefaultFunction::Bls12_381_G2_ScalarMul => 0,
DefaultFunction::Bls12_381_G2_Equal => 0,
DefaultFunction::Bls12_381_G2_Compress => 0,
DefaultFunction::Bls12_381_G2_Uncompress => 0,
DefaultFunction::Bls12_381_G2_HashToGroup => 0,
DefaultFunction::Bls12_381_MillerLoop => 0,
DefaultFunction::Bls12_381_MulMlResult => 0,
DefaultFunction::Bls12_381_FinalVerify => 0,
}
}
pub fn call(
&self,
semantics: BuiltinSemantics,
args: &[Value],
logs: &mut Vec<String>,
) -> Result<Value, Error> {
match self {
DefaultFunction::AddInteger => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_integer()?;
let result = arg1 + arg2;
let value = Value::integer(result);
Ok(value)
}
DefaultFunction::SubtractInteger => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_integer()?;
let result = arg1 - arg2;
let value = Value::integer(result);
Ok(value)
}
DefaultFunction::MultiplyInteger => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_integer()?;
let result = arg1 * arg2;
let value = Value::integer(result);
Ok(value)
}
DefaultFunction::DivideInteger => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_integer()?;
if *arg2 != 0.into() {
let (result, _) = arg1.div_mod_floor(arg2);
let value = Value::integer(result);
Ok(value)
} else {
Err(Error::DivideByZero(arg1.clone(), arg2.clone()))
}
}
DefaultFunction::QuotientInteger => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_integer()?;
if *arg2 != 0.into() {
let (result, _) = arg1.div_rem(arg2);
let value = Value::integer(result);
Ok(value)
} else {
Err(Error::DivideByZero(arg1.clone(), arg2.clone()))
}
}
DefaultFunction::RemainderInteger => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_integer()?;
if *arg2 != 0.into() {
let (_, result) = arg1.div_rem(arg2);
let value = Value::integer(result);
Ok(value)
} else {
Err(Error::DivideByZero(arg1.clone(), arg2.clone()))
}
}
DefaultFunction::ModInteger => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_integer()?;
if *arg2 != 0.into() {
let (_, result) = arg1.div_mod_floor(arg2);
let value = Value::integer(result);
Ok(value)
} else {
Err(Error::DivideByZero(arg1.clone(), arg2.clone()))
}
}
DefaultFunction::EqualsInteger => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_integer()?;
let value = Value::bool(arg1 == arg2);
Ok(value)
}
DefaultFunction::LessThanInteger => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_integer()?;
let value = Value::bool(arg1 < arg2);
Ok(value)
}
DefaultFunction::LessThanEqualsInteger => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_integer()?;
let value = Value::bool(arg1 <= arg2);
Ok(value)
}
DefaultFunction::AppendByteString => {
let arg1 = args[0].unwrap_byte_string()?;
let arg2 = args[1].unwrap_byte_string()?;
let result = arg1.iter().copied().chain(arg2.iter().copied()).collect();
let value = Value::byte_string(result);
Ok(value)
}
DefaultFunction::ConsByteString => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_byte_string()?;
let byte: u8 = match semantics {
BuiltinSemantics::V1 => {
let wrap = arg1.mod_floor(&256.into());
wrap.try_into().unwrap()
}
BuiltinSemantics::V2 => {
if *arg1 > 255.into() {
return Err(Error::ByteStringConsBiggerThanOneByte(arg1.clone()));
}
arg1.try_into().unwrap()
}
};
let mut ret = vec![byte];
ret.extend(arg2.clone());
let value = Value::byte_string(ret);
Ok(value)
}
DefaultFunction::SliceByteString => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_integer()?;
let arg3 = args[2].unwrap_byte_string()?;
let skip: usize = if arg1.lt(&0.into()) {
0
} else {
arg1.try_into().unwrap()
};
let take: usize = if arg2.lt(&0.into()) {
0
} else {
arg2.try_into().unwrap()
};
let ret: Vec<u8> = arg3.iter().skip(skip).take(take).cloned().collect();
let value = Value::byte_string(ret);
Ok(value)
}
DefaultFunction::LengthOfByteString => {
let arg1 = args[0].unwrap_byte_string()?;
let value = Value::integer(arg1.len().into());
Ok(value)
}
DefaultFunction::IndexByteString => {
let arg1 = args[0].unwrap_byte_string()?;
let arg2 = args[1].unwrap_integer()?;
let index: i128 = arg2.try_into().unwrap();
if 0 <= index && index < arg1.len() as i128 {
let ret = arg1[index as usize];
let value = Value::integer(ret.into());
Ok(value)
} else {
Err(Error::ByteStringOutOfBounds(arg2.clone(), arg1.to_vec()))
}
}
DefaultFunction::EqualsByteString => {
let arg1 = args[0].unwrap_byte_string()?;
let arg2 = args[1].unwrap_byte_string()?;
let value = Value::bool(arg1 == arg2);
Ok(value)
}
DefaultFunction::LessThanByteString => {
let arg1 = args[0].unwrap_byte_string()?;
let arg2 = args[1].unwrap_byte_string()?;
let value = Value::bool(arg1 < arg2);
Ok(value)
}
DefaultFunction::LessThanEqualsByteString => {
let arg1 = args[0].unwrap_byte_string()?;
let arg2 = args[1].unwrap_byte_string()?;
let value = Value::bool(arg1 <= arg2);
Ok(value)
}
DefaultFunction::Sha2_256 => {
use cryptoxide::{digest::Digest, sha2::Sha256};
let arg1 = args[0].unwrap_byte_string()?;
let mut hasher = Sha256::new();
hasher.input(arg1);
let mut bytes = vec![0; hasher.output_bytes()];
hasher.result(&mut bytes);
let value = Value::byte_string(bytes);
Ok(value)
}
DefaultFunction::Sha3_256 => {
use cryptoxide::{digest::Digest, sha3::Sha3_256};
let arg1 = args[0].unwrap_byte_string()?;
let mut hasher = Sha3_256::new();
hasher.input(arg1);
let mut bytes = vec![0; hasher.output_bytes()];
hasher.result(&mut bytes);
let value = Value::byte_string(bytes);
Ok(value)
}
DefaultFunction::Blake2b_224 => {
use cryptoxide::{blake2b::Blake2b, digest::Digest};
let arg1 = args[0].unwrap_byte_string()?;
let mut digest = [0u8; 28];
let mut context = Blake2b::new(28);
context.input(arg1);
context.result(&mut digest);
let value = Value::byte_string(digest.to_vec());
Ok(value)
}
DefaultFunction::Blake2b_256 => {
use cryptoxide::{blake2b::Blake2b, digest::Digest};
let arg1 = args[0].unwrap_byte_string()?;
let mut digest = [0u8; 32];
let mut context = Blake2b::new(32);
context.input(arg1);
context.result(&mut digest);
let value = Value::byte_string(digest.to_vec());
Ok(value)
}
DefaultFunction::Keccak_256 => {
use cryptoxide::{digest::Digest, sha3::Keccak256};
let arg1 = args[0].unwrap_byte_string()?;
let mut hasher = Keccak256::new();
hasher.input(arg1);
let mut bytes = vec![0; hasher.output_bytes()];
hasher.result(&mut bytes);
let value = Value::byte_string(bytes);
Ok(value)
}
DefaultFunction::VerifyEd25519Signature => {
use cryptoxide::ed25519;
let public_key = args[0].unwrap_byte_string()?;
let message = args[1].unwrap_byte_string()?;
let signature = args[2].unwrap_byte_string()?;
let public_key: [u8; 32] = public_key
.clone()
.try_into()
.map_err(|e: Vec<u8>| Error::UnexpectedEd25519PublicKeyLength(e.len()))?;
let signature: [u8; 64] = signature
.clone()
.try_into()
.map_err(|e: Vec<u8>| Error::UnexpectedEd25519SignatureLength(e.len()))?;
let valid = ed25519::verify(message, &public_key, &signature);
let value = Value::bool(valid);
Ok(value)
}
DefaultFunction::VerifyEcdsaSecp256k1Signature => {
let public_key = args[0].unwrap_byte_string()?;
let message = args[1].unwrap_byte_string()?;
let signature = args[2].unwrap_byte_string()?;
verify_ecdsa(public_key, message, signature)
}
DefaultFunction::VerifySchnorrSecp256k1Signature => {
let public_key = args[0].unwrap_byte_string()?;
let message = args[1].unwrap_byte_string()?;
let signature = args[2].unwrap_byte_string()?;
verify_schnorr(public_key, message, signature)
}
DefaultFunction::AppendString => {
let arg1 = args[0].unwrap_string()?;
let arg2 = args[1].unwrap_string()?;
let value = Value::string(format!("{arg1}{arg2}"));
Ok(value)
}
DefaultFunction::EqualsString => {
let arg1 = args[0].unwrap_string()?;
let arg2 = args[1].unwrap_string()?;
let value = Value::bool(arg1 == arg2);
Ok(value)
}
DefaultFunction::EncodeUtf8 => {
let arg1 = args[0].unwrap_string()?;
let bytes = arg1.as_bytes().to_vec();
let value = Value::byte_string(bytes);
Ok(value)
}
DefaultFunction::DecodeUtf8 => {
let arg1 = args[0].unwrap_byte_string()?;
let string = String::from_utf8(arg1.clone())?;
let value = Value::string(string);
Ok(value)
}
DefaultFunction::IfThenElse => {
let condition = args[0].unwrap_bool()?;
if *condition {
Ok(args[1].clone())
} else {
Ok(args[2].clone())
}
}
DefaultFunction::ChooseUnit => {
args[0].unwrap_unit()?;
Ok(args[1].clone())
}
DefaultFunction::Trace => {
let arg1 = args[0].unwrap_string()?;
logs.push(arg1.clone());
Ok(args[1].clone())
}
DefaultFunction::FstPair => {
let (_, _, first, _) = args[0].unwrap_pair()?;
let value = Value::Con(first.clone());
Ok(value)
}
DefaultFunction::SndPair => {
let (_, _, _, second) = args[0].unwrap_pair()?;
let value = Value::Con(second.clone());
Ok(value)
}
DefaultFunction::ChooseList => {
let (_, list) = args[0].unwrap_list()?;
if list.is_empty() {
Ok(args[1].clone())
} else {
Ok(args[2].clone())
}
}
DefaultFunction::MkCons => {
let item = args[0].unwrap_constant()?;
let (r#type, list) = args[1].unwrap_list()?;
if *r#type != Type::from(item) {
return Err(Error::TypeMismatch(Type::from(item), r#type.clone()));
}
let mut ret = vec![item.clone()];
ret.extend(list.clone());
let value = Value::list(r#type.clone(), ret);
Ok(value)
}
DefaultFunction::HeadList => {
let (_, list) = args[0].unwrap_list()?;
if list.is_empty() {
Err(Error::EmptyList(args[0].clone()))
} else {
let value = Value::Con(list[0].clone().into());
Ok(value)
}
}
DefaultFunction::TailList => {
let (r#type, list) = args[0].unwrap_list()?;
if list.is_empty() {
Err(Error::EmptyList(args[0].clone()))
} else {
let value = Value::list(r#type.clone(), list[1..].to_vec());
Ok(value)
}
}
DefaultFunction::NullList => {
let (_, list) = args[0].unwrap_list()?;
let value = Value::bool(list.is_empty());
Ok(value)
}
DefaultFunction::ChooseData => {
let con = args[0].unwrap_data()?;
match con {
PlutusData::Constr(_) => Ok(args[1].clone()),
PlutusData::Map(_) => Ok(args[2].clone()),
PlutusData::Array(_) => Ok(args[3].clone()),
PlutusData::BigInt(_) => Ok(args[4].clone()),
PlutusData::BoundedBytes(_) => Ok(args[5].clone()),
}
}
DefaultFunction::ConstrData => {
let i = args[0].unwrap_integer()?;
let l = args[1].unwrap_data_list()?;
let data_list: Vec<PlutusData> = l
.iter()
.map(|item| match item {
Constant::Data(d) => d.clone(),
_ => unreachable!(),
})
.collect();
let i: u64 = i.try_into().unwrap();
let constr_data = Data::constr(i, data_list);
let value = Value::data(constr_data);
Ok(value)
}
DefaultFunction::MapData => {
let (r#type, list) = args[0].unwrap_list()?;
if *r#type != Type::Pair(Rc::new(Type::Data), Rc::new(Type::Data)) {
return Err(Error::TypeMismatch(
Type::List(Rc::new(Type::Pair(
Rc::new(Type::Data),
Rc::new(Type::Data),
))),
r#type.clone(),
));
}
let mut map = Vec::new();
for item in list {
let Constant::ProtoPair(Type::Data, Type::Data, left, right) = item else {
unreachable!()
};
let (Constant::Data(key), Constant::Data(value)) =
(left.as_ref(), right.as_ref())
else {
unreachable!()
};
map.push((key.clone(), value.clone()));
}
let value = Value::data(PlutusData::Map(map.into()));
Ok(value)
}
DefaultFunction::ListData => {
let list = args[0].unwrap_data_list()?;
let data_list: Vec<PlutusData> = list
.iter()
.map(|item| match item {
Constant::Data(d) => d.clone(),
_ => unreachable!(),
})
.collect();
let value = Value::data(PlutusData::Array(data_list));
Ok(value)
}
DefaultFunction::IData => {
let i = args[0].unwrap_integer()?;
let value = Value::data(PlutusData::BigInt(to_pallas_bigint(i)));
Ok(value)
}
DefaultFunction::BData => {
let b = args[0].unwrap_byte_string()?;
let value = Value::data(PlutusData::BoundedBytes(b.clone().into()));
Ok(value)
}
DefaultFunction::UnConstrData => match &args[0] {
v @ Value::Con(inner) => {
let Constant::Data(PlutusData::Constr(c)) = inner.as_ref() else {
return Err(Error::DeserialisationError(
"UnConstrData".to_string(),
v.clone(),
));
};
let constant = Constant::ProtoPair(
Type::Integer,
Type::List(Type::Data.into()),
Constant::Integer(
convert_tag_to_constr(c.tag)
.unwrap_or_else(|| c.any_constructor.unwrap())
.into(),
)
.into(),
Constant::ProtoList(
Type::Data,
c.fields
.deref()
.iter()
.map(|d| Constant::Data(d.clone()))
.collect(),
)
.into(),
);
let value = Value::Con(constant.into());
Ok(value)
}
v => Err(Error::NotAConstant(v.clone())),
},
DefaultFunction::UnMapData => match &args[0] {
v @ Value::Con(inner) => {
let Constant::Data(PlutusData::Map(m)) = inner.as_ref() else {
return Err(Error::DeserialisationError(
"UnMapData".to_string(),
v.clone(),
));
};
let constant = Constant::ProtoList(
Type::Pair(Type::Data.into(), Type::Data.into()),
m.deref()
.iter()
.map(|p| -> Constant {
Constant::ProtoPair(
Type::Data,
Type::Data,
Constant::Data(p.0.clone()).into(),
Constant::Data(p.1.clone()).into(),
)
})
.collect(),
);
let value = Value::Con(constant.into());
Ok(value)
}
v => Err(Error::NotAConstant(v.clone())),
},
DefaultFunction::UnListData => match &args[0] {
v @ Value::Con(inner) => {
let Constant::Data(PlutusData::Array(l)) = inner.as_ref() else {
return Err(Error::DeserialisationError(
"UnListData".to_string(),
v.clone(),
));
};
let value = Value::list(
Type::Data,
l.deref()
.iter()
.map(|d| Constant::Data(d.clone()))
.collect(),
);
Ok(value)
}
v => Err(Error::NotAConstant(v.clone())),
},
DefaultFunction::UnIData => match &args[0] {
v @ Value::Con(inner) => {
let Constant::Data(PlutusData::BigInt(b)) = inner.as_ref() else {
return Err(Error::DeserialisationError(
"UnIData".to_string(),
v.clone(),
));
};
let value = Value::integer(from_pallas_bigint(b));
Ok(value)
}
v => Err(Error::NotAConstant(v.clone())),
},
DefaultFunction::UnBData => match &args[0] {
v @ Value::Con(inner) => {
let Constant::Data(PlutusData::BoundedBytes(b)) = inner.as_ref() else {
return Err(Error::DeserialisationError(
"UnBData".to_string(),
v.clone(),
));
};
let value = Value::byte_string(b.to_vec());
Ok(value)
}
v => Err(Error::NotAConstant(v.clone())),
},
DefaultFunction::EqualsData => {
let d1 = args[0].unwrap_data()?;
let d2 = args[1].unwrap_data()?;
let value = Value::bool(d1.eq(d2));
Ok(value)
}
DefaultFunction::SerialiseData => {
let d = args[0].unwrap_data()?;
let serialized_data = plutus_data_to_bytes(d).unwrap();
let value = Value::byte_string(serialized_data);
Ok(value)
}
DefaultFunction::MkPairData => {
let d1 = args[0].unwrap_data()?;
let d2 = args[1].unwrap_data()?;
let constant = Constant::ProtoPair(
Type::Data,
Type::Data,
Constant::Data(d1.clone()).into(),
Constant::Data(d2.clone()).into(),
);
let value = Value::Con(constant.into());
Ok(value)
}
DefaultFunction::MkNilData => {
args[0].unwrap_unit()?;
let value = Value::list(Type::Data, vec![]);
Ok(value)
}
DefaultFunction::MkNilPairData => {
args[0].unwrap_unit()?;
let constant = Constant::ProtoList(
Type::Pair(Rc::new(Type::Data), Rc::new(Type::Data)),
vec![],
);
let value = Value::Con(constant.into());
Ok(value)
}
DefaultFunction::Bls12_381_G1_Add => {
let arg1 = args[0].unwrap_bls12_381_g1_element()?;
let arg2 = args[1].unwrap_bls12_381_g1_element()?;
let mut out = blst::blst_p1::default();
unsafe {
blst::blst_p1_add_or_double(
&mut out as *mut _,
arg1 as *const _,
arg2 as *const _,
);
}
let constant = Constant::Bls12_381G1Element(out.into());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G1_Neg => {
let arg1 = args[0].unwrap_bls12_381_g1_element()?;
let mut out = *arg1;
unsafe {
blst::blst_p1_cneg(
&mut out as *mut _,
// This was true in the Cardano code
true,
);
}
let constant = Constant::Bls12_381G1Element(out.into());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G1_ScalarMul => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_bls12_381_g1_element()?;
let size_scalar = size_of::<blst::blst_scalar>();
let arg1 = arg1.mod_floor(&SCALAR_PERIOD);
let (_, mut arg1) = arg1.to_bytes_be();
if size_scalar > arg1.len() {
let diff = size_scalar - arg1.len();
let mut new_vec = vec![0; diff];
new_vec.append(&mut arg1);
arg1 = new_vec;
}
let mut out = blst::blst_p1::default();
let mut scalar = blst::blst_scalar::default();
unsafe {
blst::blst_scalar_from_bendian(
&mut scalar as *mut _,
arg1.as_ptr() as *const _,
);
blst::blst_p1_mult(
&mut out as *mut _,
arg2 as *const _,
scalar.b.as_ptr() as *const _,
size_scalar * 8,
);
}
let constant = Constant::Bls12_381G1Element(out.into());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G1_Equal => {
let arg1 = args[0].unwrap_bls12_381_g1_element()?;
let arg2 = args[1].unwrap_bls12_381_g1_element()?;
let is_equal = unsafe { blst::blst_p1_is_equal(arg1, arg2) };
let constant = Constant::Bool(is_equal);
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G1_Compress => {
let arg1 = args[0].unwrap_bls12_381_g1_element()?;
let out = arg1.compress();
let constant = Constant::ByteString(out.to_vec());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G1_Uncompress => {
let arg1 = args[0].unwrap_byte_string()?;
let out = blst::blst_p1::uncompress(arg1)?;
let constant = Constant::Bls12_381G1Element(out.into());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G1_HashToGroup => {
let arg1 = args[0].unwrap_byte_string()?;
let arg2 = args[1].unwrap_byte_string()?;
if arg2.len() > 255 {
return Err(Error::HashToCurveDstTooBig);
}
let mut out = blst::blst_p1::default();
let aug = [];
unsafe {
blst::blst_hash_to_g1(
&mut out as *mut _,
arg1.as_ptr(),
arg1.len(),
arg2.as_ptr(),
arg2.len(),
aug.as_ptr(),
0,
);
};
let constant = Constant::Bls12_381G1Element(out.into());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G2_Add => {
let arg1 = args[0].unwrap_bls12_381_g2_element()?;
let arg2 = args[1].unwrap_bls12_381_g2_element()?;
let mut out = blst::blst_p2::default();
unsafe {
blst::blst_p2_add_or_double(
&mut out as *mut _,
arg1 as *const _,
arg2 as *const _,
);
}
let constant = Constant::Bls12_381G2Element(out.into());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G2_Neg => {
let arg1 = args[0].unwrap_bls12_381_g2_element()?;
let mut out = *arg1;
unsafe {
blst::blst_p2_cneg(
&mut out as *mut _,
// This was true in the Cardano code
true,
);
}
let constant = Constant::Bls12_381G2Element(out.into());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G2_ScalarMul => {
let arg1 = args[0].unwrap_integer()?;
let arg2 = args[1].unwrap_bls12_381_g2_element()?;
let size_scalar = size_of::<blst::blst_scalar>();
let arg1 = arg1.mod_floor(&SCALAR_PERIOD);
let (_, mut arg1) = arg1.to_bytes_be();
if size_scalar > arg1.len() {
let diff = size_scalar - arg1.len();
let mut new_vec = vec![0; diff];
new_vec.append(&mut arg1);
arg1 = new_vec;
}
let mut out = blst::blst_p2::default();
let mut scalar = blst::blst_scalar::default();
unsafe {
blst::blst_scalar_from_bendian(
&mut scalar as *mut _,
arg1.as_ptr() as *const _,
);
blst::blst_p2_mult(
&mut out as *mut _,
arg2 as *const _,
scalar.b.as_ptr() as *const _,
size_scalar * 8,
);
}
let constant = Constant::Bls12_381G2Element(out.into());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G2_Equal => {
let arg1 = args[0].unwrap_bls12_381_g2_element()?;
let arg2 = args[1].unwrap_bls12_381_g2_element()?;
let is_equal = unsafe { blst::blst_p2_is_equal(arg1, arg2) };
let constant = Constant::Bool(is_equal);
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G2_Compress => {
let arg1 = args[0].unwrap_bls12_381_g2_element()?;
let out = arg1.compress();
let constant = Constant::ByteString(out.to_vec());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G2_Uncompress => {
let arg1 = args[0].unwrap_byte_string()?;
let out = blst::blst_p2::uncompress(arg1)?;
let constant = Constant::Bls12_381G2Element(out.into());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_G2_HashToGroup => {
let arg1 = args[0].unwrap_byte_string()?;
let arg2 = args[1].unwrap_byte_string()?;
if arg2.len() > 255 {
return Err(Error::HashToCurveDstTooBig);
}
let mut out = blst::blst_p2::default();
let aug = [];
unsafe {
blst::blst_hash_to_g2(
&mut out as *mut _,
arg1.as_ptr(),
arg1.len(),
arg2.as_ptr(),
arg2.len(),
aug.as_ptr(),
0,
);
};
let constant = Constant::Bls12_381G2Element(out.into());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_MillerLoop => {
let arg1 = args[0].unwrap_bls12_381_g1_element()?;
let arg2 = args[1].unwrap_bls12_381_g2_element()?;
let mut out = blst::blst_fp12::default();
let mut affine1 = blst::blst_p1_affine::default();
let mut affine2 = blst::blst_p2_affine::default();
unsafe {
blst::blst_p1_to_affine(&mut affine1 as *mut _, arg1);
blst::blst_p2_to_affine(&mut affine2 as *mut _, arg2);
blst::blst_miller_loop(&mut out as *mut _, &affine2, &affine1);
}
let constant = Constant::Bls12_381MlResult(out.into());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_MulMlResult => {
let arg1 = args[0].unwrap_bls12_381_ml_result()?;
let arg2 = args[1].unwrap_bls12_381_ml_result()?;
let mut out = blst::blst_fp12::default();
unsafe {
blst::blst_fp12_mul(&mut out as *mut _, arg1, arg2);
}
let constant = Constant::Bls12_381MlResult(out.into());
Ok(Value::Con(constant.into()))
}
DefaultFunction::Bls12_381_FinalVerify => {
let arg1 = args[0].unwrap_bls12_381_ml_result()?;
let arg2 = args[1].unwrap_bls12_381_ml_result()?;
let verified = unsafe { blst::blst_fp12_finalverify(arg1, arg2) };
let constant = Constant::Bool(verified);
Ok(Value::Con(constant.into()))
}
}
}
}
pub trait Compressable {
fn compress(&self) -> Vec<u8>;
fn uncompress(bytes: &[u8]) -> Result<Self, Error>
where
Self: std::marker::Sized;
}
impl Compressable for blst::blst_p1 {
fn compress(&self) -> Vec<u8> {
let mut out = [0; BLST_P1_COMPRESSED_SIZE];
unsafe {
blst::blst_p1_compress(&mut out as *mut _, self);
};
out.to_vec()
}
fn uncompress(bytes: &[u8]) -> Result<Self, Error> {
if bytes.len() != BLST_P1_COMPRESSED_SIZE {
return Err(Error::Blst(blst::BLST_ERROR::BLST_BAD_ENCODING));
}
let mut affine = blst::blst_p1_affine::default();
let mut out = blst::blst_p1::default();
unsafe {
let err = blst::blst_p1_uncompress(&mut affine as *mut _, bytes.as_ptr());
if err != blst::BLST_ERROR::BLST_SUCCESS {
return Err(Error::Blst(err));
}
blst::blst_p1_from_affine(&mut out as *mut _, &affine);
let in_group = blst::blst_p1_in_g1(&out);
if !in_group {
return Err(Error::Blst(blst::BLST_ERROR::BLST_POINT_NOT_IN_GROUP));
}
};
Ok(out)
}
}
impl Compressable for blst::blst_p2 {
fn compress(&self) -> Vec<u8> {
let mut out = [0; BLST_P2_COMPRESSED_SIZE];
unsafe {
blst::blst_p2_compress(&mut out as *mut _, self);
};
out.to_vec()
}
fn uncompress(bytes: &[u8]) -> Result<Self, Error> {
if bytes.len() != BLST_P2_COMPRESSED_SIZE {
return Err(Error::Blst(blst::BLST_ERROR::BLST_BAD_ENCODING));
}
let mut affine = blst::blst_p2_affine::default();
let mut out = blst::blst_p2::default();
unsafe {
let err = blst::blst_p2_uncompress(&mut affine as *mut _, bytes.as_ptr());
if err != blst::BLST_ERROR::BLST_SUCCESS {
return Err(Error::Blst(err));
}
blst::blst_p2_from_affine(&mut out as *mut _, &affine);
let in_group = blst::blst_p2_in_g2(&out);
if !in_group {
return Err(Error::Blst(blst::BLST_ERROR::BLST_POINT_NOT_IN_GROUP));
}
};
Ok(out)
}
}
pub fn convert_tag_to_constr(tag: u64) -> Option<u64> {
if (121..=127).contains(&tag) {
Some(tag - 121)
} else if (1280..=1400).contains(&tag) {
Some(tag - 1280 + 7)
} else {
None
}
}
pub fn convert_constr_to_tag(constr: u64) -> Option<u64> {
if (0..=6).contains(&constr) {
Some(121 + constr)
} else if (7..=127).contains(&constr) {
Some(1280 - 7 + constr)
} else {
None // 102 otherwise
}
}
pub static ANY_TAG: u64 = 102;
#[cfg(not(target_family = "wasm"))]
fn verify_ecdsa(public_key: &[u8], message: &[u8], signature: &[u8]) -> Result<Value, Error> {
use secp256k1::{ecdsa::Signature, Message, PublicKey, Secp256k1};
let secp = Secp256k1::verification_only();
let public_key = PublicKey::from_slice(public_key)?;
let signature = Signature::from_compact(signature)?;
let message = Message::from_slice(message)?;
let valid = secp.verify_ecdsa(&message, &signature, &public_key);
Ok(Value::Con(Constant::Bool(valid.is_ok()).into()))
}
/// Unlike the Haskell implementation the schnorr verification function in Aiken doesn't allow for arbitrary message sizes (at the moment).
/// The message needs to be 32 bytes (ideally prehashed, but not a requirement).
#[cfg(not(target_family = "wasm"))]
fn verify_schnorr(public_key: &[u8], message: &[u8], signature: &[u8]) -> Result<Value, Error> {
use secp256k1::{schnorr::Signature, Message, Secp256k1, XOnlyPublicKey};
let secp = Secp256k1::verification_only();
let public_key = XOnlyPublicKey::from_slice(public_key)?;
let signature = Signature::from_slice(signature)?;
let message = Message::from_slice(message)?;
let valid = secp.verify_schnorr(&signature, &message, &public_key);
Ok(Value::Con(Constant::Bool(valid.is_ok()).into()))
}
#[cfg(target_family = "wasm")]
fn verify_ecdsa(public_key: &[u8], message: &[u8], signature: &[u8]) -> Result<Value, Error> {
use k256::ecdsa::{self, signature::hazmat::PrehashVerifier};
let verifying_key = ecdsa::VerifyingKey::try_from(public_key)?;
let signature = ecdsa::Signature::try_from(signature)?;
let valid = verifying_key.verify_prehash(message, &signature);
Ok(Value::Con(Constant::Bool(valid.is_ok()).into()))
}
#[cfg(target_family = "wasm")]
fn verify_schnorr(public_key: &[u8], message: &[u8], signature: &[u8]) -> Result<Value, Error> {
use k256::schnorr::{self, signature::hazmat::PrehashVerifier};
let verifying_key = schnorr::VerifyingKey::from_bytes(public_key)?;
let signature = schnorr::Signature::try_from(signature)?;
let valid = verifying_key.verify_prehash(message, &signature);
Ok(Value::Con(Constant::Bool(valid.is_ok()).into()))
}
#[cfg(test)]
mod tests {
use super::{convert_constr_to_tag, convert_tag_to_constr};
#[test]
fn compact_tag_range() {
assert_eq!(convert_constr_to_tag(0), Some(121));
assert_eq!(convert_constr_to_tag(1), Some(122));
assert_eq!(convert_constr_to_tag(6), Some(127));
assert_ne!(convert_constr_to_tag(7), Some(128)); // This is not allowed
}
#[test]
fn compact_tag_mid_range() {
assert_eq!(convert_constr_to_tag(7), Some(1280));
assert_eq!(convert_constr_to_tag(8), Some(1281));
assert_eq!(convert_constr_to_tag(100), Some(1373));
assert_eq!(convert_constr_to_tag(127), Some(1400));
assert_ne!(convert_constr_to_tag(128), Some(1401)); // This is not allowed
}
#[test]
fn any_range() {
assert_eq!(convert_constr_to_tag(128), None);
assert_eq!(
convert_constr_to_tag(128).map_or(Some(128), |_| None),
Some(128)
);
assert_eq!(convert_constr_to_tag(123124125125), None);
assert_eq!(convert_constr_to_tag(1).map_or(Some(1), |_| None), None); // This is a compact tag
}
#[test]
fn to_compact_tag() {
assert_eq!(convert_tag_to_constr(121), Some(0));
assert_eq!(convert_tag_to_constr(122), Some(1));
assert_eq!(convert_tag_to_constr(127), Some(6));
assert_eq!(convert_tag_to_constr(128), None); // This can never happen actually. Pallas sorts that out already during deserialization.
}
#[test]
fn to_compact_tag_mid() {
assert_eq!(convert_tag_to_constr(1280), Some(7));
assert_eq!(convert_tag_to_constr(1281), Some(8));
assert_eq!(convert_tag_to_constr(1400), Some(127));
assert_eq!(convert_tag_to_constr(1401), None); // This can never happen actually. Pallas sorts that out already during deserialization.
}
#[test]
fn to_any_tag() {
assert_eq!(convert_tag_to_constr(102), None);
}
}