aiken/crates/uplc/src/ast.rs

565 lines
14 KiB
Rust

use std::{fmt::Display, rc::Rc};
use pallas_primitives::{alonzo::PlutusData, babbage::Language};
use crate::{
builtins::DefaultFunction,
debruijn::{self, Converter},
flat::Binder,
machine::{
cost_model::{initialize_cost_model, CostModel, ExBudget},
Machine,
},
};
/// This represents a program in Untyped Plutus Core.
/// A program contains a version tuple and a term.
/// It is generic because Term requires a generic type.
#[derive(Debug, Clone, PartialEq)]
pub struct Program<T> {
pub version: (usize, usize, usize),
pub term: Term<T>,
}
impl<T> Program<T>
where
T: Clone,
{
/// We use this to apply the validator to Datum,
/// then redeemer, then ScriptContext. If datum is
/// even necessary (i.e. minting policy).
pub fn apply(&self, program: &Self) -> Self {
let applied_term = Term::Apply {
function: Rc::new(self.term.clone()),
argument: Rc::new(program.term.clone()),
};
Program {
version: self.version,
term: applied_term,
}
}
/// We use this to apply the validator to Datum,
/// then redeemer, then ScriptContext. If datum is
/// even necessary (i.e. minting policy).
pub fn apply_term(&self, term: &Term<T>) -> Self {
let applied_term = Term::Apply {
function: Rc::new(self.term.clone()),
argument: Rc::new(term.clone()),
};
Program {
version: self.version,
term: applied_term,
}
}
pub fn apply_data(&self, plutus_data: PlutusData) -> Self {
let applied_term = Term::Apply {
function: Rc::new(self.term.clone()),
argument: Rc::new(Term::Constant(Constant::Data(plutus_data))),
};
Program {
version: self.version,
term: applied_term,
}
}
}
impl<'a, T> Display for Program<T>
where
T: Binder<'a>,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.to_pretty())
}
}
/// This represents a term in Untyped Plutus Core.
/// We need a generic type for the different forms that a program may be in.
/// Specifically, `Var` and `parameter_name` in `Lambda` can be a `Name`,
/// `NamedDebruijn`, or `DeBruijn`. When encoded to flat for on chain usage
/// we must encode using the `DeBruijn` form.
#[derive(Debug, Clone, PartialEq)]
pub enum Term<T> {
// tag: 0
Var(T),
// tag: 1
Delay(Rc<Term<T>>),
// tag: 2
Lambda {
parameter_name: T,
body: Rc<Term<T>>,
},
// tag: 3
Apply {
function: Rc<Term<T>>,
argument: Rc<Term<T>>,
},
// tag: 4
Constant(Constant),
// tag: 5
Force(Rc<Term<T>>),
// tag: 6
Error,
// tag: 7
Builtin(DefaultFunction),
}
impl<'a, T> Display for Term<T>
where
T: Binder<'a>,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.to_pretty())
}
}
/// A container for the various constants that are available
/// in Untyped Plutus Core. Used in the `Constant` variant of `Term`.
#[derive(Debug, Clone, PartialEq)]
pub enum Constant {
// tag: 0
Integer(i128),
// tag: 1
ByteString(Vec<u8>),
// tag: 2
String(String),
// tag: 3
Unit,
// tag: 4
Bool(bool),
// tag: 5
ProtoList(Type, Vec<Constant>),
// tag: 6
ProtoPair(Type, Type, Box<Constant>, Box<Constant>),
// tag: 7
// Apply(Box<Constant>, Type),
// tag: 8
Data(PlutusData),
}
#[derive(Debug, Clone, PartialEq)]
pub enum Type {
Bool,
Integer,
String,
ByteString,
Unit,
List(Box<Type>),
Pair(Box<Type>, Box<Type>),
Data,
}
impl Display for Type {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Type::Bool => write!(f, "bool"),
Type::Integer => write!(f, "integer"),
Type::String => write!(f, "string"),
Type::ByteString => write!(f, "bytestring"),
Type::Unit => write!(f, "unit"),
Type::List(t) => write!(f, "list {}", t),
Type::Pair(t1, t2) => write!(f, "pair {} {}", t1, t2),
Type::Data => write!(f, "data"),
}
}
}
/// A Name containing it's parsed textual representation
/// and a unique id from string interning. The Name's text is
/// interned during parsing.
#[derive(Debug, Clone)]
pub struct Name {
pub text: String,
pub unique: Unique,
}
impl PartialEq for Name {
fn eq(&self, other: &Self) -> bool {
self.unique == other.unique
}
}
/// A unique id used for string interning.
#[derive(Debug, Clone, PartialEq, Copy, Eq, Hash)]
pub struct Unique(isize);
impl Unique {
/// Create a new unique id.
pub fn new(unique: isize) -> Self {
Unique(unique)
}
/// Increment the available unique id. This is used during
/// string interning to get the next available unique id.
pub fn increment(&mut self) {
self.0 += 1;
}
}
impl From<isize> for Unique {
fn from(i: isize) -> Self {
Unique(i)
}
}
impl From<Unique> for isize {
fn from(d: Unique) -> Self {
d.0
}
}
impl Display for Unique {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
/// Similar to `Name` but for Debruijn indices.
/// `Name` is replaced by `NamedDebruijn` when converting
/// program to it's debruijn form.
#[derive(Debug, Clone)]
pub struct NamedDeBruijn {
pub text: String,
pub index: DeBruijn,
}
impl PartialEq for NamedDeBruijn {
fn eq(&self, other: &Self) -> bool {
self.index == other.index
}
}
/// This is useful for decoding a on chain program into debruijn form.
/// It allows for injecting fake textual names while also using Debruijn for decoding
/// without having to loop through twice.
#[derive(Debug, Clone, PartialEq)]
pub struct FakeNamedDeBruijn(pub NamedDeBruijn);
impl From<DeBruijn> for FakeNamedDeBruijn {
fn from(d: DeBruijn) -> Self {
FakeNamedDeBruijn(d.into())
}
}
impl From<FakeNamedDeBruijn> for DeBruijn {
fn from(d: FakeNamedDeBruijn) -> Self {
d.0.into()
}
}
impl From<FakeNamedDeBruijn> for NamedDeBruijn {
fn from(d: FakeNamedDeBruijn) -> Self {
d.0
}
}
impl From<NamedDeBruijn> for FakeNamedDeBruijn {
fn from(d: NamedDeBruijn) -> Self {
FakeNamedDeBruijn(d)
}
}
/// Represents a debruijn index.
#[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub struct DeBruijn(usize);
impl DeBruijn {
/// Create a new debruijn index.
pub fn new(index: usize) -> Self {
DeBruijn(index)
}
pub fn inner(&self) -> usize {
self.0
}
}
impl From<usize> for DeBruijn {
fn from(i: usize) -> Self {
DeBruijn(i)
}
}
impl From<DeBruijn> for usize {
fn from(d: DeBruijn) -> Self {
d.0
}
}
impl Display for DeBruijn {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl From<NamedDeBruijn> for DeBruijn {
fn from(n: NamedDeBruijn) -> Self {
n.index
}
}
impl From<DeBruijn> for NamedDeBruijn {
fn from(index: DeBruijn) -> Self {
NamedDeBruijn {
// Inject fake name. We got `i` from the Plutus code base.
text: String::from("i"),
index,
}
}
}
/// Convert a Parsed `Program` to a `Program` in `NamedDebruijn` form.
/// This checks for any Free Uniques in the `Program` and returns an error if found.
impl TryFrom<Program<Name>> for Program<NamedDeBruijn> {
type Error = debruijn::Error;
fn try_from(value: Program<Name>) -> Result<Self, Self::Error> {
Ok(Program::<NamedDeBruijn> {
version: value.version,
term: value.term.try_into()?,
})
}
}
/// Convert a Parsed `Term` to a `Term` in `NamedDebruijn` form.
/// This checks for any Free Uniques in the `Term` and returns an error if found.
impl TryFrom<Term<Name>> for Term<NamedDeBruijn> {
type Error = debruijn::Error;
fn try_from(value: Term<Name>) -> Result<Self, debruijn::Error> {
let mut converter = Converter::new();
let term = converter.name_to_named_debruijn(&value)?;
Ok(term)
}
}
/// Convert a Parsed `Program` to a `Program` in `Debruijn` form.
/// This checks for any Free Uniques in the `Program` and returns an error if found.
impl TryFrom<Program<Name>> for Program<DeBruijn> {
type Error = debruijn::Error;
fn try_from(value: Program<Name>) -> Result<Self, Self::Error> {
Ok(Program::<DeBruijn> {
version: value.version,
term: value.term.try_into()?,
})
}
}
/// Convert a Parsed `Term` to a `Term` in `Debruijn` form.
/// This checks for any Free Uniques in the `Program` and returns an error if found.
impl TryFrom<Term<Name>> for Term<DeBruijn> {
type Error = debruijn::Error;
fn try_from(value: Term<Name>) -> Result<Self, debruijn::Error> {
let mut converter = Converter::new();
let term = converter.name_to_debruijn(&value)?;
Ok(term)
}
}
impl TryFrom<Program<NamedDeBruijn>> for Program<Name> {
type Error = debruijn::Error;
fn try_from(value: Program<NamedDeBruijn>) -> Result<Self, Self::Error> {
Ok(Program::<Name> {
version: value.version,
term: value.term.try_into()?,
})
}
}
impl TryFrom<Term<NamedDeBruijn>> for Term<Name> {
type Error = debruijn::Error;
fn try_from(value: Term<NamedDeBruijn>) -> Result<Self, debruijn::Error> {
let mut converter = Converter::new();
let term = converter.named_debruijn_to_name(&value)?;
Ok(term)
}
}
impl From<Program<NamedDeBruijn>> for Program<DeBruijn> {
fn from(value: Program<NamedDeBruijn>) -> Self {
Program::<DeBruijn> {
version: value.version,
term: value.term.into(),
}
}
}
impl From<Term<NamedDeBruijn>> for Term<DeBruijn> {
fn from(value: Term<NamedDeBruijn>) -> Self {
let mut converter = Converter::new();
converter.named_debruijn_to_debruijn(&value)
}
}
impl From<Program<NamedDeBruijn>> for Program<FakeNamedDeBruijn> {
fn from(value: Program<NamedDeBruijn>) -> Self {
Program::<FakeNamedDeBruijn> {
version: value.version,
term: value.term.into(),
}
}
}
impl From<Term<NamedDeBruijn>> for Term<FakeNamedDeBruijn> {
fn from(value: Term<NamedDeBruijn>) -> Self {
let mut converter = Converter::new();
converter.named_debruijn_to_fake_named_debruijn(&value)
}
}
impl TryFrom<Program<DeBruijn>> for Program<Name> {
type Error = debruijn::Error;
fn try_from(value: Program<DeBruijn>) -> Result<Self, Self::Error> {
Ok(Program::<Name> {
version: value.version,
term: value.term.try_into()?,
})
}
}
impl TryFrom<Term<DeBruijn>> for Term<Name> {
type Error = debruijn::Error;
fn try_from(value: Term<DeBruijn>) -> Result<Self, debruijn::Error> {
let mut converter = Converter::new();
let term = converter.debruijn_to_name(&value)?;
Ok(term)
}
}
impl From<Program<DeBruijn>> for Program<NamedDeBruijn> {
fn from(value: Program<DeBruijn>) -> Self {
Program::<NamedDeBruijn> {
version: value.version,
term: value.term.into(),
}
}
}
impl From<Term<DeBruijn>> for Term<NamedDeBruijn> {
fn from(value: Term<DeBruijn>) -> Self {
let mut converter = Converter::new();
converter.debruijn_to_named_debruijn(&value)
}
}
impl From<Program<FakeNamedDeBruijn>> for Program<NamedDeBruijn> {
fn from(value: Program<FakeNamedDeBruijn>) -> Self {
Program::<NamedDeBruijn> {
version: value.version,
term: value.term.into(),
}
}
}
impl From<Term<FakeNamedDeBruijn>> for Term<NamedDeBruijn> {
fn from(value: Term<FakeNamedDeBruijn>) -> Self {
let mut converter = Converter::new();
converter.fake_named_debruijn_to_named_debruijn(&value)
}
}
impl Program<NamedDeBruijn> {
pub fn eval(
&self,
) -> (
Result<Term<NamedDeBruijn>, crate::machine::Error>,
ExBudget,
Vec<String>,
) {
let mut machine = Machine::new(
Language::PlutusV2,
CostModel::default(),
ExBudget::default(),
200,
);
let term = machine.run(&self.term);
(term, machine.ex_budget, machine.logs)
}
/// Evaluate a Program as PlutusV1
pub fn eval_v1(
&self,
) -> (
Result<Term<NamedDeBruijn>, crate::machine::Error>,
ExBudget,
Vec<String>,
) {
let mut machine = Machine::new(Language::PlutusV1, CostModel::v1(), ExBudget::v1(), 200);
let term = machine.run(&self.term);
(term, machine.ex_budget, machine.logs)
}
pub fn eval_as(
&self,
version: &Language,
costs: &[i64],
initial_budget: Option<&ExBudget>,
) -> (
Result<Term<NamedDeBruijn>, crate::machine::Error>,
ExBudget,
Vec<String>,
) {
let budget = match initial_budget {
Some(b) => *b,
None => ExBudget::default(),
};
let mut machine = Machine::new(
version.clone(),
initialize_cost_model(version, costs),
budget,
200, //slippage
);
let term = machine.run(&self.term);
(term, machine.ex_budget, machine.logs)
}
}
impl Program<DeBruijn> {
pub fn eval(
&self,
) -> (
Result<Term<NamedDeBruijn>, crate::machine::Error>,
ExBudget,
Vec<String>,
) {
let program: Program<NamedDeBruijn> = self.clone().into();
program.eval()
}
}
impl Term<NamedDeBruijn> {
pub fn is_valid_script_result(&self) -> bool {
!matches!(self, Term::Error)
}
}