aiken/crates/uplc/src/optimize/shrinker.rs

2902 lines
110 KiB
Rust

use std::{cmp::Ordering, iter, ops::Neg, rc::Rc, vec};
use indexmap::IndexMap;
use itertools::Itertools;
use pallas_primitives::babbage::{BigInt, PlutusData};
use crate::{
ast::{Constant, Data, Name, NamedDeBruijn, Program, Term, Type},
builder::{CONSTR_FIELDS_EXPOSER, CONSTR_INDEX_EXPOSER},
builtins::DefaultFunction,
};
use super::interner::CodeGenInterner;
#[derive(Eq, Hash, PartialEq, Clone, Debug, PartialOrd)]
pub enum ScopePath {
FUNC,
ARG,
}
#[derive(Eq, Hash, PartialEq, Clone, Debug, Default, PartialOrd)]
pub struct Scope {
scope: Vec<ScopePath>,
}
impl Scope {
pub fn new() -> Self {
Self { scope: vec![] }
}
pub fn push(&self, path: ScopePath) -> Self {
let mut new_scope = self.scope.clone();
new_scope.push(path);
Self { scope: new_scope }
}
pub fn pop(&self) -> Self {
let mut new_scope = self.scope.clone();
new_scope.pop();
Self { scope: new_scope }
}
pub fn common_ancestor(&self, other: &Scope) -> Self {
Self {
scope: self
.scope
.iter()
.zip(other.scope.iter())
.map_while(|(a, b)| if a == b { Some(a) } else { None })
.cloned()
.collect_vec(),
}
}
pub fn is_common_ancestor(&self, other: &Scope) -> bool {
self == &self.common_ancestor(other)
}
pub fn len(&self) -> usize {
self.scope.len()
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
pub struct IdGen {
id: usize,
}
impl IdGen {
pub fn new() -> Self {
Self { id: 0 }
}
pub fn next_id(&mut self) -> usize {
self.id += 1;
self.id
}
}
impl Default for IdGen {
fn default() -> Self {
Self::new()
}
}
pub const NO_INLINE: &str = "__no_inline__";
#[derive(PartialEq, PartialOrd, Default, Debug, Clone)]
pub struct VarLookup {
found: bool,
occurrences: isize,
delays: isize,
no_inline: bool,
}
impl VarLookup {
pub fn new() -> Self {
Self {
found: false,
occurrences: 0,
delays: 0,
no_inline: false,
}
}
pub fn new_found() -> Self {
Self {
found: true,
occurrences: 1,
delays: 0,
no_inline: false,
}
}
pub fn combine(self, other: Self) -> Self {
Self {
found: self.found || other.found,
occurrences: self.occurrences + other.occurrences,
delays: self.delays + other.delays,
no_inline: self.no_inline || other.no_inline,
}
}
pub fn delay_if_found(self, delay_amount: isize) -> Self {
if self.found {
Self {
found: self.found,
occurrences: self.occurrences,
delays: self.delays + delay_amount,
no_inline: self.no_inline,
}
} else {
self
}
}
pub fn no_inline_if_found(self) -> Self {
if self.found {
Self {
found: self.found,
occurrences: self.occurrences,
delays: self.delays,
no_inline: true,
}
} else {
self
}
}
}
impl DefaultFunction {
pub fn is_order_agnostic_builtin(self) -> bool {
matches!(
self,
DefaultFunction::AddInteger
| DefaultFunction::MultiplyInteger
| DefaultFunction::EqualsInteger
| DefaultFunction::EqualsByteString
| DefaultFunction::EqualsString
| DefaultFunction::EqualsData
| DefaultFunction::Bls12_381_G1_Equal
| DefaultFunction::Bls12_381_G2_Equal
| DefaultFunction::Bls12_381_G1_Add
| DefaultFunction::Bls12_381_G2_Add
)
}
/// For now all of the curry builtins are not forceable
pub fn can_curry_builtin(self) -> bool {
matches!(
self,
DefaultFunction::AddInteger
| DefaultFunction::SubtractInteger
| DefaultFunction::MultiplyInteger
| DefaultFunction::DivideInteger
| DefaultFunction::ModInteger
| DefaultFunction::QuotientInteger
| DefaultFunction::RemainderInteger
| DefaultFunction::EqualsInteger
| DefaultFunction::EqualsByteString
| DefaultFunction::EqualsString
| DefaultFunction::EqualsData
| DefaultFunction::Bls12_381_G1_Equal
| DefaultFunction::Bls12_381_G2_Equal
| DefaultFunction::LessThanInteger
| DefaultFunction::LessThanEqualsInteger
| DefaultFunction::AppendByteString
| DefaultFunction::ConsByteString
| DefaultFunction::SliceByteString
| DefaultFunction::IndexByteString
| DefaultFunction::LessThanEqualsByteString
| DefaultFunction::LessThanByteString
| DefaultFunction::AppendString
| DefaultFunction::Bls12_381_G1_Add
| DefaultFunction::Bls12_381_G2_Add
| DefaultFunction::ConstrData
)
}
pub fn is_error_safe(self, arg_stack: &[&Term<Name>]) -> bool {
match self {
DefaultFunction::AddInteger
| DefaultFunction::SubtractInteger
| DefaultFunction::MultiplyInteger
| DefaultFunction::EqualsInteger
| DefaultFunction::LessThanInteger
| DefaultFunction::LessThanEqualsInteger => arg_stack.iter().all(|arg| {
if let Term::Constant(c) = arg {
matches!(c.as_ref(), Constant::Integer(_))
} else {
false
}
}),
DefaultFunction::DivideInteger
| DefaultFunction::ModInteger
| DefaultFunction::QuotientInteger
| DefaultFunction::RemainderInteger => arg_stack.iter().all(|arg| {
if let Term::Constant(c) = arg {
if let Constant::Integer(i) = c.as_ref() {
*i != 0.into()
} else {
false
}
} else {
false
}
}),
DefaultFunction::EqualsByteString
| DefaultFunction::AppendByteString
| DefaultFunction::LessThanEqualsByteString
| DefaultFunction::LessThanByteString => arg_stack.iter().all(|arg| {
if let Term::Constant(c) = arg {
matches!(c.as_ref(), Constant::ByteString(_))
} else {
false
}
}),
DefaultFunction::ConsByteString => {
if let (Term::Constant(c), Term::Constant(c2)) = (&arg_stack[0], &arg_stack[1]) {
if let (Constant::Integer(i), Constant::ByteString(_)) =
(c.as_ref(), c2.as_ref())
{
i >= &0.into() && i < &256.into()
} else {
false
}
} else {
false
}
}
DefaultFunction::SliceByteString => {
if let (Term::Constant(c), Term::Constant(c2), Term::Constant(c3)) =
(&arg_stack[0], &arg_stack[1], &arg_stack[2])
{
matches!(
(c.as_ref(), c2.as_ref(), c3.as_ref()),
(
Constant::Integer(_),
Constant::Integer(_),
Constant::ByteString(_)
)
)
} else {
false
}
}
DefaultFunction::IndexByteString => {
if let (Term::Constant(c), Term::Constant(c2)) = (&arg_stack[0], &arg_stack[1]) {
if let (Constant::ByteString(bs), Constant::Integer(i)) =
(c.as_ref(), c2.as_ref())
{
i >= &0.into() && i < &bs.len().into()
} else {
false
}
} else {
false
}
}
DefaultFunction::EqualsString | DefaultFunction::AppendString => {
arg_stack.iter().all(|arg| {
if let Term::Constant(c) = arg {
matches!(c.as_ref(), Constant::String(_))
} else {
false
}
})
}
DefaultFunction::EqualsData => arg_stack.iter().all(|arg| {
if let Term::Constant(c) = arg {
matches!(c.as_ref(), Constant::Data(_))
} else {
false
}
}),
DefaultFunction::Bls12_381_G1_Equal | DefaultFunction::Bls12_381_G1_Add => {
arg_stack.iter().all(|arg| {
if let Term::Constant(c) = arg {
matches!(c.as_ref(), Constant::Bls12_381G1Element(_))
} else {
false
}
})
}
DefaultFunction::Bls12_381_G2_Equal | DefaultFunction::Bls12_381_G2_Add => {
arg_stack.iter().all(|arg| {
if let Term::Constant(c) = arg {
matches!(c.as_ref(), Constant::Bls12_381G2Element(_))
} else {
false
}
})
}
DefaultFunction::ConstrData => {
if let (Term::Constant(c), Term::Constant(c2)) = (&arg_stack[0], &arg_stack[1]) {
if let (Constant::Integer(i), Constant::ProtoList(Type::Data, _)) =
(c.as_ref(), c2.as_ref())
{
i >= &0.into()
} else {
false
}
} else {
false
}
}
_ => false,
}
}
}
#[derive(PartialEq, Clone, Debug)]
pub enum BuiltinArgs {
TwoArgs {
fst: (usize, Term<Name>),
snd: Option<(usize, Term<Name>)>,
},
ThreeArgs {
fst: (usize, Term<Name>),
snd: Option<(usize, Term<Name>)>,
thd: Option<(usize, Term<Name>)>,
},
TwoArgsAnyOrder {
fst: (usize, Term<Name>),
snd: Option<(usize, Term<Name>)>,
},
}
impl BuiltinArgs {
fn args_from_arg_stack(stack: Vec<(usize, Term<Name>)>, func: DefaultFunction) -> Self {
let error_safe = func.is_error_safe(&stack.iter().map(|(_, term)| term).collect_vec());
let mut ordered_arg_stack = stack.into_iter().sorted_by(|(_, arg1), (_, arg2)| {
// sort by constant first if the builtin is order agnostic
if func.is_order_agnostic_builtin() {
if matches!(arg1, Term::Constant(_)) == matches!(arg2, Term::Constant(_)) {
Ordering::Equal
} else if matches!(arg1, Term::Constant(_)) {
Ordering::Less
} else {
Ordering::Greater
}
} else {
Ordering::Equal
}
});
if ordered_arg_stack.len() == 2 && func.is_order_agnostic_builtin() {
// This is the special case where the order of args is irrelevant to the builtin
// An example is addInteger or multiplyInteger
BuiltinArgs::TwoArgsAnyOrder {
fst: ordered_arg_stack.next().unwrap(),
snd: if error_safe {
ordered_arg_stack.next()
} else {
None
},
}
} else if ordered_arg_stack.len() == 2 {
BuiltinArgs::TwoArgs {
fst: ordered_arg_stack.next().unwrap(),
snd: if error_safe {
ordered_arg_stack.next()
} else {
None
},
}
} else {
BuiltinArgs::ThreeArgs {
fst: ordered_arg_stack.next().unwrap(),
snd: ordered_arg_stack.next(),
thd: if error_safe {
ordered_arg_stack.next()
} else {
None
},
}
}
}
fn args_to_curried_args(self, builtin: DefaultFunction) -> CurriedBuiltin {
let args = match self {
BuiltinArgs::TwoArgs { fst, snd } | BuiltinArgs::TwoArgsAnyOrder { fst, snd } => {
CurriedArgs::TwoArgs {
fst_args: vec![CurriedNode {
id: fst.0,
term: fst.1,
}],
snd_args: snd
.into_iter()
.map(|item| CurriedNode {
id: item.0,
term: item.1,
})
.collect_vec(),
}
}
BuiltinArgs::ThreeArgs { fst, snd, thd } => CurriedArgs::ThreeArgs {
fst_args: vec![CurriedNode {
id: fst.0,
term: fst.1,
}],
snd_args: snd
.into_iter()
.map(|item| CurriedNode {
id: item.0,
term: item.1,
})
.collect_vec(),
thd_args: thd
.into_iter()
.map(|item| CurriedNode {
id: item.0,
term: item.1,
})
.collect_vec(),
},
};
CurriedBuiltin {
func: builtin,
args,
}
}
pub fn get_id_args(self) -> Vec<UplcNode> {
match self {
BuiltinArgs::TwoArgs { fst, snd } | BuiltinArgs::TwoArgsAnyOrder { fst, snd } => {
iter::once(fst)
.chain(snd)
.map(|item| UplcNode {
applied_id: item.0,
curried_id: item.0,
term: item.1,
})
.collect_vec()
}
BuiltinArgs::ThreeArgs { fst, snd, thd } => iter::once(fst)
.chain(snd)
.chain(thd)
.map(|item| UplcNode {
applied_id: item.0,
curried_id: item.0,
term: item.1,
})
.collect_vec(),
}
}
}
#[derive(PartialEq, Clone, Debug)]
pub struct CurriedNode {
id: usize,
term: Term<Name>,
}
#[derive(PartialEq, Clone, Debug)]
pub struct UplcNode {
applied_id: usize,
curried_id: usize,
term: Term<Name>,
}
#[derive(Eq, Hash, PartialEq, Clone, Debug)]
pub struct CurriedName {
func_name: String,
id_vec: Vec<usize>,
}
impl CurriedName {
pub fn len(&self) -> usize {
self.id_vec.len()
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
#[derive(PartialEq, Clone, Debug)]
pub enum CurriedArgs {
TwoArgs {
fst_args: Vec<CurriedNode>,
snd_args: Vec<CurriedNode>,
},
ThreeArgs {
fst_args: Vec<CurriedNode>,
snd_args: Vec<CurriedNode>,
thd_args: Vec<CurriedNode>,
},
}
impl CurriedArgs {
pub fn merge_node_by_path(self, path: BuiltinArgs) -> Self {
match (self, path) {
(
CurriedArgs::TwoArgs {
mut fst_args,
mut snd_args,
},
BuiltinArgs::TwoArgs { fst, snd },
) => {
let fst_args = match fst_args.iter_mut().find(|item| item.term == fst.1) {
None => {
fst_args.push(CurriedNode {
id: fst.0,
term: fst.1,
});
fst_args
}
_ => fst_args,
};
let snd_args = match snd_args.iter_mut().find(|item| match &snd {
Some(snd) => item.term == snd.1,
None => false,
}) {
None => snd_args
.into_iter()
.chain(snd.into_iter().map(|item| CurriedNode {
id: item.0,
term: item.1,
}))
.collect_vec(),
_ => snd_args,
};
CurriedArgs::TwoArgs { fst_args, snd_args }
}
(
CurriedArgs::TwoArgs {
mut fst_args,
mut snd_args,
},
BuiltinArgs::TwoArgsAnyOrder { fst, snd },
) => {
let mut switched = false;
let fst_args = if fst_args.iter_mut().any(|item| item.term == fst.1) {
fst_args
} else if fst_args.iter_mut().any(|item| match &snd {
Some(snd) => item.term == snd.1,
None => false,
}) {
switched = true;
fst_args
} else {
fst_args.push(CurriedNode {
id: fst.0,
term: fst.1.clone(),
});
fst_args
};
// If switched then put the first arg in the second arg slot
let snd_args = if switched {
if snd_args.iter_mut().any(|item| item.term == fst.1) {
snd_args
} else {
snd_args.push(CurriedNode {
id: fst.0,
term: fst.1,
});
snd_args
}
} else if snd_args.iter_mut().any(|item| match &snd {
Some(snd) => item.term == snd.1,
None => false,
}) {
snd_args
} else {
snd_args
.into_iter()
.chain(snd.into_iter().map(|item| CurriedNode {
id: item.0,
term: item.1,
}))
.collect_vec()
};
CurriedArgs::TwoArgs { fst_args, snd_args }
}
(
CurriedArgs::ThreeArgs {
mut fst_args,
mut snd_args,
mut thd_args,
},
BuiltinArgs::ThreeArgs { fst, snd, thd },
) => {
let fst_args = match fst_args.iter_mut().find(|item| item.term == fst.1) {
None => {
fst_args.push(CurriedNode {
id: fst.0,
term: fst.1,
});
fst_args
}
_ => fst_args,
};
let snd_args = match snd_args.iter_mut().find(|item| match &snd {
Some(snd) => item.term == snd.1,
None => false,
}) {
None => snd_args
.into_iter()
.chain(snd.into_iter().map(|item| CurriedNode {
id: item.0,
term: item.1,
}))
.collect_vec(),
_ => snd_args,
};
let thd_args = match thd_args.iter_mut().find(|item| match &thd {
Some(thd) => item.term == thd.1,
None => false,
}) {
None => thd_args
.into_iter()
.chain(thd.into_iter().map(|item| CurriedNode {
id: item.0,
term: item.1,
}))
.collect_vec(),
_ => thd_args,
};
CurriedArgs::ThreeArgs {
fst_args,
snd_args,
thd_args,
}
}
_ => unreachable!(),
}
}
fn get_id_args(&self, path: &BuiltinArgs) -> Option<Vec<UplcNode>> {
match (self, path) {
(CurriedArgs::TwoArgs { fst_args, snd_args }, BuiltinArgs::TwoArgs { fst, snd }) => {
let arg = fst_args.iter().find(|item| fst.1 == item.term)?;
let Some(arg2) = snd_args.iter().find(|item| match snd {
Some(snd) => item.term == snd.1,
None => false,
}) else {
return Some(vec![UplcNode {
applied_id: fst.0,
curried_id: arg.id,
term: arg.term.clone(),
}]);
};
Some(vec![
UplcNode {
applied_id: fst.0,
curried_id: arg.id,
term: arg.term.clone(),
},
UplcNode {
applied_id: snd.as_ref().unwrap().0,
curried_id: arg2.id,
term: arg2.term.clone(),
},
])
}
(
CurriedArgs::TwoArgs { fst_args, snd_args },
BuiltinArgs::TwoArgsAnyOrder { fst, snd },
) => {
let mut id_vec = vec![];
if let Some(arg) = fst_args.iter().find(|item| item.term == fst.1) {
id_vec.push(UplcNode {
applied_id: fst.0,
curried_id: arg.id,
term: arg.term.clone(),
});
let Some(arg2) = snd_args.iter().find(|item| match snd {
Some(snd) => snd.1 == item.term,
None => false,
}) else {
return Some(id_vec);
};
id_vec.push(UplcNode {
applied_id: snd.as_ref().unwrap().0,
curried_id: arg2.id,
term: arg2.term.clone(),
});
Some(id_vec)
} else if let Some(arg) = fst_args.iter().find(|item| match &snd {
Some(snd) => item.term == snd.1,
None => false,
}) {
id_vec.push(UplcNode {
applied_id: snd.as_ref().unwrap().0,
curried_id: arg.id,
term: arg.term.clone(),
});
let Some(arg2) = snd_args.iter().find(|item| item.term == fst.1) else {
return Some(id_vec);
};
id_vec.push(UplcNode {
applied_id: fst.0,
curried_id: arg2.id,
term: arg2.term.clone(),
});
Some(id_vec)
} else {
None
}
}
(
CurriedArgs::ThreeArgs {
fst_args,
snd_args,
thd_args,
},
BuiltinArgs::ThreeArgs { fst, snd, thd },
) => {
let arg = fst_args.iter().find(|item| fst.1 == item.term)?;
let Some(arg2) = snd_args.iter().find(|item| match snd {
Some(snd) => item.term == snd.1,
None => false,
}) else {
return Some(vec![UplcNode {
applied_id: fst.0,
curried_id: arg.id,
term: arg.term.clone(),
}]);
};
let Some(arg3) = thd_args.iter().find(|item| match thd {
Some(thd) => item.term == thd.1,
None => false,
}) else {
return Some(vec![
UplcNode {
applied_id: fst.0,
curried_id: arg.id,
term: arg.term.clone(),
},
UplcNode {
applied_id: snd.as_ref().unwrap().0,
curried_id: arg2.id,
term: arg2.term.clone(),
},
]);
};
Some(vec![
UplcNode {
applied_id: fst.0,
curried_id: arg.id,
term: arg.term.clone(),
},
UplcNode {
applied_id: snd.as_ref().unwrap().0,
curried_id: arg2.id,
term: arg2.term.clone(),
},
UplcNode {
applied_id: thd.as_ref().unwrap().0,
curried_id: arg3.id,
term: arg3.term.clone(),
},
])
}
_ => unreachable!(),
}
}
fn is_flipped(&self, path: &BuiltinArgs) -> bool {
match (self, path) {
(CurriedArgs::TwoArgs { fst_args, .. }, BuiltinArgs::TwoArgsAnyOrder { fst, snd }) => {
if fst_args.iter().any(|item| item.term == fst.1) {
false
} else {
fst_args.iter().any(|item| match &snd {
Some(snd) => item.term == snd.1,
None => false,
})
}
}
_ => false,
}
}
}
#[derive(PartialEq, Clone, Debug)]
pub struct CurriedBuiltin {
pub func: DefaultFunction,
/// For use with subtract integer where we can flip the order of the arguments
/// if the second argument is a constant
pub args: CurriedArgs,
}
impl CurriedBuiltin {
pub fn merge_node_by_path(self, path: BuiltinArgs) -> Self {
Self {
func: self.func,
args: self.args.merge_node_by_path(path),
}
}
pub fn get_id_args(&self, path: &BuiltinArgs) -> Option<Vec<UplcNode>> {
self.args.get_id_args(path)
}
pub fn is_flipped(&self, path: &BuiltinArgs) -> bool {
self.args.is_flipped(path)
}
}
impl Term<Name> {
fn traverse_uplc_with_helper(
&mut self,
scope: &Scope,
mut arg_stack: Vec<(usize, Term<Name>)>,
id_gen: &mut IdGen,
with: &mut impl FnMut(Option<usize>, &mut Term<Name>, Vec<(usize, Term<Name>)>, &Scope),
inline_lambda: bool,
) {
match self {
Term::Apply { function, argument } => {
let arg = Rc::make_mut(argument);
Self::traverse_uplc_with_helper(
arg,
&scope.push(ScopePath::ARG),
vec![],
id_gen,
with,
inline_lambda,
);
let apply_id = id_gen.next_id();
arg_stack.push((apply_id, arg.clone()));
let func = Rc::make_mut(function);
Self::traverse_uplc_with_helper(
func,
&scope.push(ScopePath::FUNC),
arg_stack,
id_gen,
with,
inline_lambda,
);
scope.pop();
with(Some(apply_id), self, vec![], scope);
}
Term::Delay(d) => {
let d = Rc::make_mut(d);
// First we recurse further to reduce the inner terms before coming back up to the Delay
Self::traverse_uplc_with_helper(d, scope, arg_stack, id_gen, with, inline_lambda);
with(None, self, vec![], scope);
}
Term::Lambda {
parameter_name: p,
body,
} => {
let p = p.as_ref().clone();
// Lambda pops one item off the arg stack. If there is no item then it is a unsaturated lambda
// We also skip NO_INLINE lambdas since those are placeholder lambdas created by codegen
let args = if p.text == NO_INLINE {
vec![]
} else {
arg_stack.pop().map(|arg| vec![arg]).unwrap_or_default()
};
if inline_lambda {
// Pass in either one or zero args.
// For lambda we run the function with first then recurse on the body or replaced term
with(None, self, args, scope);
match self {
Term::Lambda {
parameter_name,
body,
} if parameter_name.as_ref() == &p => {
let body = Rc::make_mut(body);
Self::traverse_uplc_with_helper(
body,
scope,
arg_stack,
id_gen,
with,
inline_lambda,
);
}
Term::Constr { .. } => todo!(),
Term::Case { .. } => todo!(),
other => Self::traverse_uplc_with_helper(
other,
scope,
arg_stack,
id_gen,
with,
inline_lambda,
),
}
} else {
let body = Rc::make_mut(body);
Self::traverse_uplc_with_helper(
body,
scope,
arg_stack,
id_gen,
with,
inline_lambda,
);
with(None, self, args, scope);
}
}
Term::Force(f) => {
let f = Rc::make_mut(f);
Self::traverse_uplc_with_helper(f, scope, arg_stack, id_gen, with, inline_lambda);
with(None, self, vec![], scope);
}
Term::Case { .. } => todo!(),
Term::Constr { .. } => todo!(),
Term::Builtin(func) => {
let mut args = vec![];
for _ in 0..func.arity() {
if let Some(arg) = arg_stack.pop() {
args.push(arg);
}
}
// Pass in args up to function arity.
with(None, self, args, scope);
}
term => {
with(None, term, vec![], scope);
}
}
}
}
impl Program<Name> {
fn traverse_uplc_with(
self,
inline_lambda: bool,
with: &mut impl FnMut(Option<usize>, &mut Term<Name>, Vec<(usize, Term<Name>)>, &Scope),
) -> Self {
let mut term = self.term;
let scope = Scope { scope: vec![] };
let arg_stack = vec![];
let mut id_gen = IdGen::new();
term.traverse_uplc_with_helper(&scope, arg_stack, &mut id_gen, with, inline_lambda);
Program {
version: self.version,
term,
}
}
pub fn lambda_reducer(self) -> Self {
let mut lambda_applied_ids = vec![];
self.traverse_uplc_with(true, &mut |id, term, mut arg_stack, _scope| {
match term {
Term::Apply { function, .. } => {
// We are applying some arg so now we unwrap the id of the applied arg
let id = id.unwrap();
if lambda_applied_ids.contains(&id) {
let func = Rc::make_mut(function);
// we inlined the arg so now remove the apply and arg from the program
*term = func.clone();
}
}
Term::Lambda {
parameter_name,
body,
} => {
// pops stack here no matter what
if let Some((arg_id, arg_term)) = arg_stack.pop() {
match &arg_term {
Term::Constant(c) if matches!(c.as_ref(), Constant::String(_)) => {}
Term::Delay(e) if matches!(e.as_ref(), Term::Error) => {
let body = Rc::make_mut(body);
lambda_applied_ids.push(arg_id);
// creates new body that replaces all var occurrences with the arg
*term = substitute_var(body, parameter_name.clone(), &arg_term);
}
Term::Constant(_) | Term::Var(_) | Term::Builtin(_) => {
let body = Rc::make_mut(body);
lambda_applied_ids.push(arg_id);
// creates new body that replaces all var occurrences with the arg
*term = substitute_var(body, parameter_name.clone(), &arg_term);
}
l @ Term::Lambda { .. } => {
if is_a_builtin_wrapper(l) {
let body = Rc::make_mut(body);
lambda_applied_ids.push(arg_id);
// creates new body that replaces all var occurrences with the arg
*term = substitute_var(body, parameter_name.clone(), &arg_term);
}
}
_ => {}
}
}
}
Term::Case { .. } => todo!(),
Term::Constr { .. } => todo!(),
_ => {}
}
})
}
pub fn builtin_force_reducer(self) -> Self {
let mut builtin_map = IndexMap::new();
let program = self.traverse_uplc_with(true, &mut |_id, term, _arg_stack, _scope| {
if let Term::Force(f) = term {
let f = Rc::make_mut(f);
match f {
Term::Force(inner_f) => {
if let Term::Builtin(func) = inner_f.as_ref() {
builtin_map.insert(*func as u8, ());
*term = Term::Var(
Name {
text: format!("__{}_wrapped", func.aiken_name()),
unique: 0.into(),
}
.into(),
);
}
}
Term::Builtin(func) if func.force_count() == 1 => {
builtin_map.insert(*func as u8, ());
*term = Term::Var(
Name {
text: format!("__{}_wrapped", func.aiken_name()),
unique: 0.into(),
}
.into(),
);
}
_ => {}
}
}
});
let mut term = program.term;
for default_func_index in builtin_map.keys().sorted().cloned() {
let default_func: DefaultFunction = default_func_index.try_into().unwrap();
term = term
.lambda(format!("__{}_wrapped", default_func.aiken_name()))
.apply(if default_func.force_count() == 1 {
Term::Builtin(default_func).force()
} else {
Term::Builtin(default_func).force().force()
});
}
let mut program = Program {
version: program.version,
term,
};
let mut interner = CodeGenInterner::new();
interner.program(&mut program);
let program = Program::<NamedDeBruijn>::try_from(program).unwrap();
Program::<Name>::try_from(program).unwrap()
}
pub fn identity_reducer(self) -> Self {
let mut identity_applied_ids = vec![];
self.traverse_uplc_with(true, &mut |id, term, mut arg_stack, _scope| {
match term {
Term::Apply { function, .. } => {
// We are applying some arg so now we unwrap the id of the applied arg
let id = id.unwrap();
if identity_applied_ids.contains(&id) {
let func = Rc::make_mut(function);
// we inlined the arg so now remove the apply and arg from the program
*term = func.clone();
}
}
Term::Lambda {
parameter_name,
body,
} => {
// pops stack here no matter what
match arg_stack.pop() {
Some((
arg_id,
Term::Lambda {
parameter_name: inline_name,
body: identity_body,
},
)) if inline_name.text == NO_INLINE => {
if let Term::Lambda {
parameter_name: identity_name,
body: identity_body,
} = identity_body.as_ref()
{
if let Term::Var(identity_var) = identity_body.as_ref() {
if identity_var.text == identity_name.text
&& identity_var.unique == identity_name.unique
{
// Replace all applied usages of identity with the arg
let temp_term = replace_identity_usage(
body.as_ref(),
parameter_name.clone(),
);
// Have to check if the body still has any occurrences of the parameter
// After attempting replacement
if var_occurrences(
&temp_term,
parameter_name.clone(),
vec![],
vec![],
)
.found
{
let body = Rc::make_mut(body);
*body = temp_term;
} else {
identity_applied_ids.push(arg_id);
*term = temp_term;
}
}
}
}
}
Some((
arg_id,
Term::Lambda {
parameter_name: identity_name,
body: identity_body,
},
)) => {
if let Term::Var(identity_var) = identity_body.as_ref() {
if identity_var.text == identity_name.text
&& identity_var.unique == identity_name.unique
{
// Replace all applied usages of identity with the arg
let temp_term = replace_identity_usage(
body.as_ref(),
parameter_name.clone(),
);
// Have to check if the body still has any occurrences of the parameter
// After attempting replacement
if var_occurrences(
&temp_term,
parameter_name.clone(),
vec![],
vec![],
)
.found
{
let body = Rc::make_mut(body);
*body = temp_term;
} else {
identity_applied_ids.push(arg_id);
*term = temp_term;
}
}
}
}
_ => {}
}
}
Term::Constr { .. } => todo!(),
Term::Case { .. } => todo!(),
_ => {}
}
})
}
pub fn inline_reducer(self) -> Self {
let mut lambda_applied_ids = vec![];
self.traverse_uplc_with(true, &mut |id, term, mut arg_stack, _scope| match term {
Term::Apply { function, .. } => {
// We are applying some arg so now we unwrap the id of the applied arg
let id = id.unwrap();
if lambda_applied_ids.contains(&id) {
// we inlined the arg so now remove the apply and arg from the program
*term = function.as_ref().clone();
}
}
Term::Lambda {
parameter_name,
body,
} => {
// pops stack here no matter what
if let Some((arg_id, arg_term)) = arg_stack.pop() {
let arg_term = match &arg_term {
Term::Lambda {
parameter_name,
body,
} if parameter_name.text == NO_INLINE => body.as_ref().clone(),
_ => arg_term,
};
let body = Rc::make_mut(body);
let var_lookup = var_occurrences(body, parameter_name.clone(), vec![], vec![]);
let substitute_condition = (var_lookup.delays == 0 && !var_lookup.no_inline)
|| matches!(
&arg_term,
Term::Var(_)
| Term::Constant(_)
| Term::Delay(_)
| Term::Lambda { .. }
| Term::Builtin(_),
);
if var_lookup.occurrences == 1 && substitute_condition {
*body = substitute_var(body, parameter_name.clone(), &arg_term);
lambda_applied_ids.push(arg_id);
*term = body.clone();
// This will strip out unused terms that can't throw an error by themselves
} else if !var_lookup.found
&& matches!(
arg_term,
Term::Var(_)
| Term::Constant(_)
| Term::Delay(_)
| Term::Lambda { .. }
| Term::Builtin(_)
)
{
lambda_applied_ids.push(arg_id);
*term = body.clone();
}
}
}
Term::Constr { .. } => todo!(),
Term::Case { .. } => todo!(),
_ => {}
})
}
pub fn force_delay_reducer(self) -> Self {
self.traverse_uplc_with(true, &mut |_id, term, _arg_stack, _scope| {
if let Term::Force(f) = term {
let f = f.as_ref();
if let Term::Delay(body) = f {
*term = body.as_ref().clone();
}
}
})
}
pub fn remove_no_inlines(self) -> Self {
self.traverse_uplc_with(true, &mut |_, term, _, _| match term {
Term::Lambda {
parameter_name,
body,
} if parameter_name.text == NO_INLINE => *term = body.as_ref().clone(),
_ => {}
})
}
pub fn inline_constr_ops(self) -> Self {
self.traverse_uplc_with(true, &mut |_, term, _, _| {
if let Term::Apply { function, argument } = term {
if let Term::Var(name) = function.as_ref() {
if name.text == CONSTR_FIELDS_EXPOSER {
*term = Term::snd_pair().apply(Term::Apply {
function: Term::unconstr_data().into(),
argument: argument.clone(),
})
} else if name.text == CONSTR_INDEX_EXPOSER {
*term = Term::fst_pair().apply(Term::Apply {
function: Term::unconstr_data().into(),
argument: argument.clone(),
})
}
}
}
})
}
pub fn cast_data_reducer(self) -> Self {
let mut applied_ids = vec![];
self.traverse_uplc_with(true, &mut |id, term, mut arg_stack, _scope| {
match term {
Term::Apply { function, .. } => {
// We are apply some arg so now we unwrap the id of the applied arg
let id = id.unwrap();
if applied_ids.contains(&id) {
let func = Rc::make_mut(function);
// we inlined the arg so now remove the apply and arg from the program
*term = func.clone();
}
}
Term::Builtin(first_function) => {
let Some((arg_id, arg_term)) = arg_stack.pop() else {
return;
};
match arg_term {
Term::Apply { function, argument } => {
if let Term::Builtin(second_function) = function.as_ref() {
match (first_function, second_function) {
(DefaultFunction::UnIData, DefaultFunction::IData)
| (DefaultFunction::IData, DefaultFunction::UnIData)
| (DefaultFunction::BData, DefaultFunction::UnBData)
| (DefaultFunction::UnBData, DefaultFunction::BData)
| (DefaultFunction::ListData, DefaultFunction::UnListData)
| (DefaultFunction::UnListData, DefaultFunction::ListData)
| (DefaultFunction::MapData, DefaultFunction::UnMapData)
| (DefaultFunction::UnMapData, DefaultFunction::MapData) => {
applied_ids.push(arg_id);
*term = argument.as_ref().clone();
}
_ => {}
}
}
}
Term::Constant(c) => match (first_function, c.as_ref()) {
(
DefaultFunction::UnIData,
Constant::Data(PlutusData::BigInt(BigInt::Int(i))),
) => {
applied_ids.push(arg_id);
*term = Term::integer(i128::from(*i).into());
}
(DefaultFunction::IData, Constant::Integer(i)) => {
applied_ids.push(arg_id);
*term = Term::data(Data::integer(i.clone()));
}
(
DefaultFunction::UnBData,
Constant::Data(PlutusData::BoundedBytes(b)),
) => {
applied_ids.push(arg_id);
*term = Term::byte_string(b.clone().into());
}
(DefaultFunction::BData, Constant::ByteString(b)) => {
applied_ids.push(arg_id);
*term = Term::data(Data::bytestring(b.clone()));
}
(DefaultFunction::UnListData, Constant::Data(PlutusData::Array(l))) => {
applied_ids.push(arg_id);
*term = Term::list_values(
l.iter()
.map(|item| Constant::Data(item.clone()))
.collect_vec(),
);
}
(DefaultFunction::ListData, Constant::ProtoList(_, l)) => {
applied_ids.push(arg_id);
*term = Term::data(Data::list(
l.iter()
.map(|item| match item {
Constant::Data(d) => d.clone(),
_ => unreachable!(),
})
.collect_vec(),
));
}
(DefaultFunction::MapData, Constant::ProtoList(_, m)) => {
applied_ids.push(arg_id);
*term = Term::data(Data::map(
m.iter()
.map(|m| match m {
Constant::ProtoPair(_, _, f, s) => {
match (f.as_ref(), s.as_ref()) {
(Constant::Data(d), Constant::Data(d2)) => {
(d.clone(), d2.clone())
}
_ => unreachable!(),
}
}
_ => unreachable!(),
})
.collect_vec(),
));
}
(DefaultFunction::UnMapData, Constant::Data(PlutusData::Map(m))) => {
applied_ids.push(arg_id);
*term = Term::map_values(
m.iter()
.map(|item| {
Constant::ProtoPair(
Type::Data,
Type::Data,
Constant::Data(item.0.clone()).into(),
Constant::Data(item.1.clone()).into(),
)
})
.collect_vec(),
);
}
_ => {}
},
_ => {}
}
}
Term::Constr { .. } => todo!(),
Term::Case { .. } => todo!(),
_ => {}
}
})
}
// Converts subtract integer with a constant to add integer with a negative constant
pub fn convert_arithmetic_ops(self) -> Self {
let mut constants_to_flip = vec![];
self.traverse_uplc_with(true, &mut |id, term, arg_stack, _scope| match term {
Term::Apply { argument, .. } => {
let id = id.unwrap();
if constants_to_flip.contains(&id) {
let Term::Constant(c) = Rc::make_mut(argument) else {
unreachable!();
};
let Constant::Integer(i) = c.as_ref() else {
unreachable!();
};
*c = Constant::Integer(i.neg()).into();
}
}
Term::Builtin(d @ DefaultFunction::SubtractInteger) => {
if arg_stack.len() == d.arity() {
let Some((apply_id, Term::Constant(_))) = arg_stack.last() else {
return;
};
constants_to_flip.push(*apply_id);
*term = Term::Builtin(DefaultFunction::AddInteger);
}
}
Term::Constr { .. } => todo!(),
Term::Case { .. } => todo!(),
_ => {}
})
}
pub fn builtin_curry_reducer(self) -> Self {
let mut curried_terms = vec![];
let mut id_mapped_curry_terms: IndexMap<CurriedName, (Scope, Term<Name>, usize)> =
IndexMap::new();
let mut curry_applied_ids = vec![];
let mut scope_mapped_to_term: IndexMap<Scope, Vec<(CurriedName, Term<Name>)>> =
IndexMap::new();
let mut flipped_terms: IndexMap<Scope, bool> = IndexMap::new();
let mut final_ids: IndexMap<Vec<usize>, ()> = IndexMap::new();
let step_a =
self.traverse_uplc_with(false, &mut |_id, term, arg_stack, scope| match term {
Term::Builtin(func) => {
if func.can_curry_builtin() && arg_stack.len() == func.arity() {
// In the case of order agnostic builtins we want to sort the args by constant first
// This gives us the opportunity to curry constants that often pop up in the code
let builtin_args = BuiltinArgs::args_from_arg_stack(arg_stack, *func);
// First we see if we have already curried this builtin before
let mut id_vec = if let Some((index, _)) =
curried_terms.iter_mut().find_position(
|curried_term: &&mut CurriedBuiltin| curried_term.func == *func,
) {
// We found it the builtin was curried before
// So now we merge the new args into the existing curried builtin
let curried_builtin = curried_terms.swap_remove(index);
let curried_builtin =
curried_builtin.merge_node_by_path(builtin_args.clone());
let Some(id_vec) = curried_builtin.get_id_args(&builtin_args) else {
unreachable!();
};
flipped_terms
.insert(scope.clone(), curried_builtin.is_flipped(&builtin_args));
curried_terms.push(curried_builtin);
id_vec
} else {
// Brand new buitlin so we add it to the list
let curried_builtin = builtin_args.clone().args_to_curried_args(*func);
let Some(id_vec) = curried_builtin.get_id_args(&builtin_args) else {
unreachable!();
};
curried_terms.push(curried_builtin);
id_vec
};
while let Some(node) = id_vec.pop() {
let mut id_only_vec =
id_vec.iter().map(|item| item.curried_id).collect_vec();
id_only_vec.push(node.curried_id);
let curry_name = CurriedName {
func_name: func.aiken_name(),
id_vec: id_only_vec,
};
if let Some((map_scope, _, occurrences)) =
id_mapped_curry_terms.get_mut(&curry_name)
{
*map_scope = map_scope.common_ancestor(scope);
*occurrences += 1;
} else if id_vec.is_empty() {
id_mapped_curry_terms.insert(
curry_name,
(scope.clone(), Term::Builtin(*func).apply(node.term), 1),
);
} else {
let var_name = id_vec_function_to_var(
&func.aiken_name(),
&id_vec.iter().map(|item| item.curried_id).collect_vec(),
);
id_mapped_curry_terms.insert(
curry_name,
(scope.clone(), Term::var(var_name).apply(node.term), 1),
);
}
}
}
}
Term::Constr { .. } => todo!(),
Term::Case { .. } => todo!(),
_ => {}
});
id_mapped_curry_terms
.into_iter()
// Only hoist for occurrences greater than 2
.filter(|(_, (_, _, occurrences))| *occurrences > 2)
.for_each(|(key, val)| {
final_ids.insert(key.id_vec.clone(), ());
match scope_mapped_to_term.get_mut(&val.0) {
Some(list) => {
let insert_position = list
.iter()
.position(|(list_key, _)| key.len() <= list_key.len())
.unwrap_or(list.len());
list.insert(insert_position, (key, val.1));
}
None => {
scope_mapped_to_term.insert(val.0, vec![(key, val.1)]);
}
}
});
let mut step_b =
step_a.traverse_uplc_with(false, &mut |id, term, mut arg_stack, scope| match term {
Term::Builtin(func) => {
if func.can_curry_builtin() && arg_stack.len() == func.arity() {
let Some(curried_builtin) =
curried_terms.iter().find(|curry| curry.func == *func)
else {
return;
};
if let Some(true) = flipped_terms.get(scope) {
arg_stack.reverse();
}
let builtin_args = BuiltinArgs::args_from_arg_stack(arg_stack, *func);
let Some(mut id_vec) = curried_builtin.get_id_args(&builtin_args) else {
return;
};
while !id_vec.is_empty() {
let id_lookup = id_vec.iter().map(|item| item.curried_id).collect_vec();
if final_ids.contains_key(&id_lookup) {
break;
}
id_vec.pop();
}
if id_vec.is_empty() {
return;
}
let name = id_vec_function_to_var(
&func.aiken_name(),
&id_vec.iter().map(|item| item.curried_id).collect_vec(),
);
id_vec.iter().for_each(|item| {
curry_applied_ids.push(item.applied_id);
});
*term = Term::var(name);
}
}
Term::Apply { function, .. } => {
let id = id.unwrap();
if curry_applied_ids.contains(&id) {
*term = function.as_ref().clone();
}
if let Some(insert_list) = scope_mapped_to_term.remove(scope) {
for (key, val) in insert_list.into_iter().rev() {
let name = id_vec_function_to_var(&key.func_name, &key.id_vec);
if var_occurrences(term, Name::text(&name).into(), vec![], vec![]).found
{
*term = term.clone().lambda(name).apply(val);
}
}
}
}
Term::Constr { .. } => todo!(),
Term::Case { .. } => todo!(),
_ => {
if let Some(insert_list) = scope_mapped_to_term.remove(scope) {
for (key, val) in insert_list.into_iter().rev() {
let name = id_vec_function_to_var(&key.func_name, &key.id_vec);
if var_occurrences(term, Name::text(&name).into(), vec![], vec![]).found
{
*term = term.clone().lambda(name).apply(val);
}
}
}
}
});
let mut interner = CodeGenInterner::new();
interner.program(&mut step_b);
step_b
}
}
fn id_vec_function_to_var(func_name: &str, id_vec: &[usize]) -> String {
format!(
"__{}_{}_curried",
func_name,
id_vec
.iter()
.map(|item| item.to_string())
.collect::<Vec<String>>()
.join("_")
)
}
fn var_occurrences(
term: &Term<Name>,
search_for: Rc<Name>,
mut arg_stack: Vec<()>,
mut force_stack: Vec<()>,
) -> VarLookup {
match term {
Term::Var(name) => {
if name.text == search_for.text && name.unique == search_for.unique {
VarLookup::new_found()
} else {
VarLookup::new()
}
}
Term::Delay(body) => {
let not_forced: isize = isize::from(force_stack.pop().is_none());
var_occurrences(body, search_for, arg_stack, force_stack).delay_if_found(not_forced)
}
Term::Lambda {
parameter_name,
body,
} => {
if parameter_name.text == NO_INLINE {
var_occurrences(body.as_ref(), search_for, arg_stack, force_stack)
.no_inline_if_found()
} else if parameter_name.text == search_for.text
&& parameter_name.unique == search_for.unique
{
VarLookup::new()
} else {
let not_applied: isize = isize::from(arg_stack.pop().is_none());
var_occurrences(body.as_ref(), search_for, arg_stack, force_stack)
.delay_if_found(not_applied)
}
}
Term::Apply { function, argument } => {
arg_stack.push(());
var_occurrences(
function.as_ref(),
search_for.clone(),
arg_stack,
force_stack,
)
.combine(var_occurrences(
argument.as_ref(),
search_for,
vec![],
vec![],
))
}
Term::Force(x) => {
force_stack.push(());
var_occurrences(x.as_ref(), search_for, arg_stack, force_stack)
}
Term::Case { .. } => todo!(),
Term::Constr { .. } => todo!(),
_ => VarLookup::new(),
}
}
fn substitute_var(term: &Term<Name>, original: Rc<Name>, replace_with: &Term<Name>) -> Term<Name> {
match term {
Term::Var(name) => {
if name.text == original.text && name.unique == original.unique {
replace_with.clone()
} else {
Term::Var(name.clone())
}
}
Term::Delay(body) => {
Term::Delay(substitute_var(body.as_ref(), original, replace_with).into())
}
Term::Lambda {
parameter_name,
body,
} => {
if parameter_name.text == original.text && parameter_name.unique == original.unique {
Term::Lambda {
parameter_name: parameter_name.clone(),
body: body.clone(),
}
} else {
Term::Lambda {
parameter_name: parameter_name.clone(),
body: substitute_var(body.as_ref(), original, replace_with).into(),
}
}
}
Term::Apply { function, argument } => Term::Apply {
function: substitute_var(function.as_ref(), original.clone(), replace_with).into(),
argument: substitute_var(argument.as_ref(), original, replace_with).into(),
},
Term::Force(f) => Term::Force(substitute_var(f.as_ref(), original, replace_with).into()),
Term::Case { .. } => todo!(),
Term::Constr { .. } => todo!(),
x => x.clone(),
}
}
fn replace_identity_usage(term: &Term<Name>, original: Rc<Name>) -> Term<Name> {
match term {
Term::Delay(body) => Term::Delay(replace_identity_usage(body.as_ref(), original).into()),
Term::Lambda {
parameter_name,
body,
} => {
if parameter_name.text == original.text && parameter_name.unique == original.unique {
Term::Lambda {
parameter_name: parameter_name.clone(),
body: body.clone(),
}
} else {
Term::Lambda {
parameter_name: parameter_name.clone(),
body: Rc::new(replace_identity_usage(body.as_ref(), original)),
}
}
}
Term::Apply { function, argument } => {
let func = replace_identity_usage(function.as_ref(), original.clone());
let arg = replace_identity_usage(argument.as_ref(), original.clone());
let Term::Var(name) = &func else {
return Term::Apply {
function: func.into(),
argument: arg.into(),
};
};
if name.text == original.text && name.unique == original.unique {
arg
} else {
Term::Apply {
function: func.into(),
argument: arg.into(),
}
}
}
Term::Force(f) => Term::Force(Rc::new(replace_identity_usage(f.as_ref(), original))),
Term::Case { .. } => todo!(),
Term::Constr { .. } => todo!(),
x => x.clone(),
}
}
fn is_a_builtin_wrapper(term: &Term<Name>) -> bool {
let (names, term) = pop_lambdas_and_get_names(term);
let mut arg_names = vec![];
let mut term = term;
while let Term::Apply { function, argument } = term {
match argument.as_ref() {
Term::Var(name) => arg_names.push(name),
Term::Constant(_) => {}
_ => {
return false;
}
}
term = function.as_ref();
}
arg_names.iter().all(|item| names.contains(item)) && matches!(term, Term::Builtin(_))
}
fn pop_lambdas_and_get_names(term: &Term<Name>) -> (Vec<Rc<Name>>, &Term<Name>) {
let mut names = vec![];
let mut term = term;
while let Term::Lambda {
parameter_name,
body,
} = term
{
if parameter_name.text != NO_INLINE {
names.push(parameter_name.clone());
}
term = body.as_ref();
}
(names, term)
}
#[cfg(test)]
mod tests {
use pallas_primitives::babbage::{BigInt, PlutusData};
use pretty_assertions::assert_eq;
use crate::{
ast::{Constant, Data, Name, NamedDeBruijn, Program, Term},
builder::{CONSTR_FIELDS_EXPOSER, CONSTR_INDEX_EXPOSER},
builtins::DefaultFunction,
optimize::interner::CodeGenInterner,
};
use super::NO_INLINE;
fn compare_optimization(
mut expected: Program<Name>,
mut program: Program<Name>,
optimization: fn(Program<Name>) -> Program<Name>,
) {
let mut interner = CodeGenInterner::new();
interner.program(&mut program);
let mut interner = CodeGenInterner::new();
interner.program(&mut expected);
let expected: Program<NamedDeBruijn> = expected.try_into().unwrap();
let actual = optimization(program);
let actual: Program<NamedDeBruijn> = actual.try_into().unwrap();
assert_eq!(actual, expected);
}
#[test]
fn lambda_reduce_var() {
let program = Program {
version: (1, 0, 0),
term: Term::var("bar")
.lambda("bar")
.apply(Term::var("foo"))
.lambda("foo")
.apply(
Term::constr_data()
.apply(Term::integer(3.into()))
.apply(Term::list_values(vec![])),
),
};
let expected = Program {
version: (1, 0, 0),
term: Term::var("foo").lambda("foo").apply(
Term::constr_data()
.apply(Term::integer(3.into()))
.apply(Term::list_values(vec![])),
),
};
compare_optimization(expected, program, |p| p.lambda_reducer());
}
#[test]
fn lambda_reduce_constant() {
let program = Program {
version: (1, 0, 0),
term: Term::var("foo")
.lambda("foo")
.apply(Term::integer(6.into())),
};
let expected: Program<Name> = Program {
version: (1, 0, 0),
term: Term::integer(6.into()),
};
compare_optimization(expected, program, |p| p.lambda_reducer());
}
#[test]
fn lambda_reduce_builtin() {
let program = Program {
version: (1, 0, 0),
term: Term::var("foo").lambda("foo").apply(Term::add_integer()),
};
let expected: Program<Name> = Program {
version: (1, 0, 0),
term: Term::add_integer(),
};
compare_optimization(expected, program, |p| p.lambda_reducer());
}
#[test]
fn lambda_reduce_force_delay_error_lam() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::var("foo")
.apply(Term::var("bar"))
.apply(Term::var("baz"))
.apply(Term::var("bat"))
.lambda("foo")
.apply(Term::snd_pair())
.lambda("bar")
.apply(Term::integer(1.into()).delay())
.lambda("baz")
.apply(Term::Error)
.lambda("bat")
.apply(Term::bool(false).lambda("x")),
};
let expected = Program {
version: (1, 0, 0),
term: Term::var("foo")
.apply(Term::var("bar"))
.apply(Term::var("baz"))
.apply(Term::var("bat"))
.lambda("foo")
.apply(Term::snd_pair())
.lambda("bar")
.apply(Term::integer(1.into()).delay())
.lambda("baz")
.apply(Term::Error)
.lambda("bat")
.apply(Term::bool(false).lambda("x")),
};
compare_optimization(expected, program, |p| p.lambda_reducer());
}
#[test]
fn builtin_force_reduce_list_builtins() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::mk_cons()
.apply(Term::var("x"))
.apply(Term::tail_list().apply(Term::head_list().apply(Term::var("y"))))
.lambda("x")
.lambda("y"),
};
let expected = Program {
version: (1, 0, 0),
term: Term::var("__cons_list_wrapped")
.apply(Term::var("x"))
.apply(
Term::var("__tail_list_wrapped")
.apply(Term::var("__head_list_wrapped").apply(Term::var("y"))),
)
.lambda("x")
.lambda("y")
// Forces are automatically applied by builder
.lambda("__cons_list_wrapped")
.apply(Term::mk_cons())
.lambda("__head_list_wrapped")
.apply(Term::head_list())
.lambda("__tail_list_wrapped")
.apply(Term::tail_list()),
};
compare_optimization(expected, program, |p| p.builtin_force_reducer());
}
#[test]
fn builtin_force_reduce_if_builtin() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::equals_integer()
.apply(Term::var("x"))
.apply(
Term::add_integer()
.apply(Term::integer(2.into()))
.apply(Term::var("y")),
)
.delayed_if_then_else(
Term::length_of_bytearray().apply(Term::byte_string(vec![])),
Term::Error,
)
.lambda("x")
.lambda("y"),
};
let expected = Program {
version: (1, 0, 0),
term: Term::var("__if_then_else_wrapped")
.apply(
Term::equals_integer().apply(Term::var("x")).apply(
Term::add_integer()
.apply(Term::integer(2.into()))
.apply(Term::var("y")),
),
)
.apply(
Term::length_of_bytearray()
.apply(Term::byte_string(vec![]))
.delay(),
)
.apply(Term::Error.delay())
.force()
.lambda("x")
.lambda("y")
.lambda("__if_then_else_wrapped")
.apply(Term::Builtin(DefaultFunction::IfThenElse).force()),
};
compare_optimization(expected, program, |p| p.builtin_force_reducer());
}
#[test]
fn builtin_force_reduce_pair_builtins() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::add_integer()
.apply(Term::un_i_data().apply(Term::fst_pair().apply(Term::var("__pair"))))
.apply(Term::un_i_data().apply(Term::snd_pair().apply(Term::var("__pair"))))
.lambda("__pair")
.apply(
Term::mk_pair_data()
.apply(Term::data(Data::integer(1.into())))
.apply(Term::data(Data::integer(5.into()))),
),
};
let expected = Program {
version: (1, 0, 0),
term: Term::add_integer()
.apply(
Term::un_i_data()
.apply(Term::var("__fst_pair_wrapped").apply(Term::var("__pair"))),
)
.apply(
Term::un_i_data()
.apply(Term::var("__snd_pair_wrapped").apply(Term::var("__pair"))),
)
.lambda("__pair")
.apply(
Term::mk_pair_data()
.apply(Term::data(Data::integer(1.into())))
.apply(Term::data(Data::integer(5.into()))),
)
.lambda("__fst_pair_wrapped")
.apply(Term::fst_pair())
.lambda("__snd_pair_wrapped")
.apply(Term::snd_pair()),
};
compare_optimization(expected, program, |p| p.builtin_force_reducer());
}
#[test]
fn identity_reduce_usage() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::sha2_256()
.apply(Term::var("identity").apply(Term::var("x")))
.lambda("x")
.apply(Term::byte_string(vec![]).delay())
.lambda("identity")
.apply(Term::var("y").lambda("y")),
};
let expected = Program {
version: (1, 0, 0),
term: Term::sha2_256()
.apply(Term::var("x"))
.lambda("x")
.apply(Term::byte_string(vec![]).delay()),
};
compare_optimization(expected, program, |p| p.identity_reducer());
}
#[test]
fn identity_reduce_0_occurrence() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::sha2_256()
.apply(Term::var("x"))
.lambda("x")
.apply(Term::byte_string(vec![]).delay())
.lambda("identity")
.apply(Term::var("y").lambda("y")),
};
let expected = Program {
version: (1, 0, 0),
term: Term::sha2_256()
.apply(Term::var("x"))
.lambda("x")
.apply(Term::byte_string(vec![]).delay()),
};
compare_optimization(expected, program, |p| p.identity_reducer());
}
#[test]
fn identity_reduce_param() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::sha2_256()
.apply(
Term::var("f")
.apply(Term::var("x"))
.apply(Term::var("identity")),
)
.lambda("x")
.apply(Term::byte_string(vec![]).delay())
.lambda("identity")
.apply(Term::var("y").lambda("y"))
.lambda("f")
.apply(
Term::var("with")
.apply(Term::var("x"))
.lambda("with")
.lambda("x"),
),
};
let expected = Program {
version: (1, 0, 0),
term: Term::sha2_256()
.apply(
Term::var("f")
.apply(Term::var("x"))
.apply(Term::var("identity")),
)
.lambda("x")
.apply(Term::byte_string(vec![]).delay())
.lambda("identity")
.apply(Term::var("y").lambda("y"))
.lambda("f")
.apply(
Term::var("with")
.apply(Term::var("x"))
.lambda("with")
.lambda("x"),
),
};
compare_optimization(expected, program, |p| p.identity_reducer());
}
#[test]
fn identity_reduce_no_inline() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::sha2_256()
.apply(Term::var("identity").apply(Term::var("x")))
.lambda("x")
.apply(Term::byte_string(vec![]).delay())
.lambda("identity")
.apply(Term::var("y").lambda("y").lambda(NO_INLINE)),
};
let expected = Program {
version: (1, 0, 0),
term: Term::sha2_256()
.apply(Term::var("x"))
.lambda("x")
.apply(Term::byte_string(vec![]).delay()),
};
compare_optimization(expected, program, |p| p.identity_reducer());
}
#[test]
fn identity_reduce_no_inline_2() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::sha2_256()
.apply(Term::var("identity").apply(Term::var("x")))
.lambda("x")
.apply(Term::byte_string(vec![]).delay())
.lambda(NO_INLINE)
.lambda("identity")
.apply(Term::var("y").lambda("y").lambda(NO_INLINE)),
};
let expected = Program {
version: (1, 0, 0),
term: Term::sha2_256()
.apply(Term::var("x"))
.lambda("x")
.apply(Term::byte_string(vec![]).delay())
.lambda(NO_INLINE),
};
compare_optimization(expected, program, |p| p.identity_reducer());
}
#[test]
fn inline_reduce_delay_sha() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::sha2_256()
.apply(Term::var("x"))
.lambda("x")
.apply(Term::byte_string(vec![]).delay()),
};
let expected = Program {
version: (1, 0, 0),
term: Term::sha2_256().apply(Term::byte_string(vec![]).delay()),
};
compare_optimization(expected, program, |p| p.inline_reducer());
}
#[test]
fn inline_reduce_0_occurrence() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::sha2_256()
.lambda("x")
.apply(Term::byte_string(vec![]).delay()),
};
let expected = Program {
version: (1, 0, 0),
term: Term::sha2_256(),
};
compare_optimization(expected, program, |p| p.inline_reducer());
}
#[test]
fn wrap_data_reduce_i_data() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::equals_data()
.apply(Term::i_data().apply(Term::un_i_data().apply(Term::Constant(
Constant::Data(PlutusData::BigInt(BigInt::Int(5.into()))).into(),
))))
.apply(Term::i_data().apply(Term::integer(1.into())))
.lambda("x"),
};
let expected = Program {
version: (1, 0, 0),
term: Term::equals_data()
.apply(Term::Constant(
Constant::Data(PlutusData::BigInt(BigInt::Int(5.into()))).into(),
))
.apply(Term::data(Data::integer(1.into())))
.lambda("x"),
};
compare_optimization(expected, program, |p| p.cast_data_reducer());
}
#[test]
fn wrap_data_reduce_un_i_data() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::equals_integer()
.apply(Term::un_i_data().apply(Term::i_data().apply(Term::integer(1.into()))))
.apply(Term::un_i_data().apply(Term::Constant(
Constant::Data(PlutusData::BigInt(BigInt::Int(5.into()))).into(),
)))
.lambda("x"),
};
let expected = Program {
version: (1, 0, 0),
term: Term::equals_integer()
.apply(Term::integer(1.into()))
.apply(Term::integer(5.into()))
.lambda("x"),
};
compare_optimization(expected, program, |p| p.cast_data_reducer());
}
#[test]
fn curry_reducer_test_1() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::add_integer()
.apply(Term::var("x"))
.apply(Term::integer(1.into()))
.lambda("x")
.apply(
Term::add_integer()
.apply(Term::integer(1.into()))
.apply(Term::var("y")),
)
.lambda("y")
.apply(
Term::add_integer()
.apply(Term::var("g"))
.apply(Term::integer(1.into())),
)
.lambda("g"),
};
let expected = Program {
version: (1, 0, 0),
term: Term::var("add_one_curried")
.apply(Term::var("x"))
.lambda("x")
.apply(Term::var("add_one_curried").apply(Term::var("y")))
.lambda("y")
.apply(Term::var("add_one_curried").apply(Term::var("g")))
.lambda("add_one_curried")
.apply(Term::add_integer().apply(Term::integer(1.into())))
.lambda("g"),
};
compare_optimization(expected, program, |p| p.builtin_curry_reducer());
}
#[test]
fn curry_reducer_test_2() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::add_integer()
.apply(Term::var("x"))
.apply(Term::integer(1.into()))
.lambda("x")
.apply(
Term::add_integer()
.apply(Term::integer(1.into()))
.apply(Term::var("y")),
)
.lambda("y")
.apply(Term::integer(5.into())),
};
let expected = Program {
version: (1, 0, 0),
term: Term::add_integer()
.apply(Term::var("x"))
.apply(Term::integer(1.into()))
.lambda("x")
.apply(
Term::add_integer()
.apply(Term::integer(1.into()))
.apply(Term::var("y")),
)
.lambda("y")
.apply(Term::integer(5.into())),
};
compare_optimization(expected, program, |p| p.builtin_curry_reducer());
}
#[test]
fn curry_reducer_test_3() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::var("equivalence")
.lambda("equivalence")
.apply(
Term::equals_integer()
.apply(Term::integer(0.into()))
.apply(Term::var(CONSTR_INDEX_EXPOSER).apply(Term::var("tuple_index_0")))
.if_then_else(
Term::equals_integer()
.apply(Term::integer(0.into()))
.apply(
Term::var(CONSTR_INDEX_EXPOSER)
.apply(Term::var("tuple_index_1")),
)
.if_then_else(
Term::equals_integer()
.apply(
Term::subtract_integer()
.apply(Term::var("x2"))
.apply(Term::var("x1")),
)
.apply(Term::integer(0.into()))
.delayed_if_then_else(
Term::equals_integer()
.apply(
Term::subtract_integer()
.apply(Term::var("y2"))
.apply(Term::var("y1")),
)
.apply(Term::integer(0.into())),
Term::bool(false),
)
.lambda("x2")
.apply(Term::un_i_data().apply(
Term::fst_pair().apply(Term::var("field_0_pair")),
))
.lambda("y2")
.apply(Term::un_i_data().apply(
Term::snd_pair().apply(Term::var("field_0_pair")),
))
.lambda("field_0_pair")
.apply(
Term::mk_pair_data()
.apply(
Term::head_list()
.apply(Term::var("__list_data")),
)
.apply(Term::head_list().apply(Term::var("__tail")))
.lambda("__tail")
.apply(
Term::tail_list()
.apply(Term::var("__list_data")),
)
.lambda("__list_data")
.apply(
Term::unlist_data().apply(
Term::head_list().apply(Term::var(
"tuple_index_1_fields",
)),
),
),
)
.lambda("tuple_index_1_fields")
.apply(
Term::var(CONSTR_FIELDS_EXPOSER)
.apply(Term::var("tuple_index_1")),
)
.delay(),
Term::var("clauses_delayed"),
)
.force()
.lambda("x1")
.apply(
Term::un_i_data()
.apply(Term::fst_pair().apply(Term::var("field_0_pair"))),
)
.lambda("y1")
.apply(
Term::un_i_data()
.apply(Term::snd_pair().apply(Term::var("field_0_pair"))),
)
.lambda("field_0_pair")
.apply(
Term::mk_pair_data()
.apply(Term::head_list().apply(Term::var("__list_data")))
.apply(Term::head_list().apply(Term::var("__tail")))
.lambda("__tail")
.apply(Term::tail_list().apply(Term::var("__list_data")))
.lambda("__list_data")
.apply(
Term::unlist_data().apply(
Term::head_list()
.apply(Term::var("tuple_index_0_fields")),
),
),
)
.lambda("tuple_index_0_fields")
.apply(
Term::var(CONSTR_FIELDS_EXPOSER)
.apply(Term::var("tuple_index_0")),
)
.delay(),
Term::var("clauses_delayed"),
)
.force()
.lambda("clauses_delayed")
.apply(
Term::equals_integer()
.apply(Term::integer(1.into()))
.apply(
Term::var(CONSTR_INDEX_EXPOSER)
.apply(Term::var("tuple_index_0")),
)
.if_then_else(
Term::equals_integer()
.apply(Term::integer(1.into()))
.apply(
Term::var(CONSTR_INDEX_EXPOSER)
.apply(Term::var("tuple_index_1")),
)
.if_then_else(
Term::bool(true).delay(),
Term::var("clauses_delayed"),
)
.force()
.delay(),
Term::var("clauses_delayed"),
)
.force()
.lambda("clauses_delayed")
.apply(
Term::equals_integer()
.apply(Term::integer(1.into()))
.apply(
Term::var(CONSTR_INDEX_EXPOSER)
.apply(Term::var("tuple_index_0")),
)
.if_then_else(
Term::equals_integer()
.apply(Term::integer(0.into()))
.apply(
Term::var(CONSTR_INDEX_EXPOSER)
.apply(Term::var("tuple_index_1")),
)
.if_then_else(
Term::bool(false).delay(),
Term::var("clauses_delayed"),
)
.force()
.delay(),
Term::var("clauses_delayed"),
)
.force()
.lambda("clauses_delayed")
.apply(Term::bool(false).delay())
.delay(),
)
.delay(),
)
.lambda("tuple_index_0")
.apply(Term::fst_pair().apply(Term::var("input")))
.lambda("tuple_index_1")
.apply(Term::snd_pair().apply(Term::var("input")))
.lambda("input")
.apply(
Term::mk_pair_data()
.apply(Term::var("ec1"))
.apply(Term::var("ec2")),
)
.lambda("ec2")
.lambda("ec1"),
)
.apply(Term::data(Data::constr(1, vec![])))
.apply(Term::data(Data::constr(1, vec![])))
.delayed_if_then_else(
Term::bool(true),
Term::bool(true).if_then_else(Term::bool(false), Term::bool(true)),
)
.constr_index_exposer()
.constr_fields_exposer(),
};
let expected = Program {
version: (1, 0, 0),
term: Term::var("equivalence")
.lambda("equivalence")
.apply(
Term::var("equals_integer_0_curried")
.apply(Term::var(CONSTR_INDEX_EXPOSER).apply(Term::var("tuple_index_0")))
.if_then_else(
Term::var("equals_integer_0_curried")
.apply(
Term::var(CONSTR_INDEX_EXPOSER)
.apply(Term::var("tuple_index_1")),
)
.if_then_else(
Term::var("equals_integer_0_curried")
.apply(
Term::subtract_integer()
.apply(Term::var("x2"))
.apply(Term::var("x1")),
)
.delayed_if_then_else(
Term::var("equals_integer_0_curried").apply(
Term::subtract_integer()
.apply(Term::var("y2"))
.apply(Term::var("y1")),
),
Term::bool(false),
)
.lambda("x2")
.apply(Term::un_i_data().apply(
Term::fst_pair().apply(Term::var("field_0_pair")),
))
.lambda("y2")
.apply(Term::un_i_data().apply(
Term::snd_pair().apply(Term::var("field_0_pair")),
))
.lambda("field_0_pair")
.apply(
Term::mk_pair_data()
.apply(
Term::head_list()
.apply(Term::var("__list_data")),
)
.apply(Term::head_list().apply(Term::var("__tail")))
.lambda("__tail")
.apply(
Term::tail_list()
.apply(Term::var("__list_data")),
)
.lambda("__list_data")
.apply(
Term::unlist_data().apply(
Term::head_list().apply(Term::var(
"tuple_index_1_fields",
)),
),
),
)
.lambda("tuple_index_1_fields")
.apply(
Term::var(CONSTR_FIELDS_EXPOSER)
.apply(Term::var("tuple_index_1")),
)
.delay(),
Term::var("clauses_delayed"),
)
.force()
.lambda("x1")
.apply(
Term::un_i_data()
.apply(Term::fst_pair().apply(Term::var("field_0_pair"))),
)
.lambda("y1")
.apply(
Term::un_i_data()
.apply(Term::snd_pair().apply(Term::var("field_0_pair"))),
)
.lambda("field_0_pair")
.apply(
Term::mk_pair_data()
.apply(Term::head_list().apply(Term::var("__list_data")))
.apply(Term::head_list().apply(Term::var("__tail")))
.lambda("__tail")
.apply(Term::tail_list().apply(Term::var("__list_data")))
.lambda("__list_data")
.apply(
Term::unlist_data().apply(
Term::head_list()
.apply(Term::var("tuple_index_0_fields")),
),
),
)
.lambda("tuple_index_0_fields")
.apply(
Term::var(CONSTR_FIELDS_EXPOSER)
.apply(Term::var("tuple_index_0")),
)
.delay(),
Term::var("clauses_delayed"),
)
.force()
.lambda("clauses_delayed")
.apply(
Term::var("equals_integer_1_curried")
.apply(
Term::var(CONSTR_INDEX_EXPOSER)
.apply(Term::var("tuple_index_0")),
)
.if_then_else(
Term::var("equals_integer_1_curried")
.apply(
Term::var(CONSTR_INDEX_EXPOSER)
.apply(Term::var("tuple_index_1")),
)
.if_then_else(
Term::bool(true).delay(),
Term::var("clauses_delayed"),
)
.force()
.delay(),
Term::var("clauses_delayed"),
)
.force()
.lambda("clauses_delayed")
.apply(
Term::var("equals_integer_1_curried")
.apply(
Term::var(CONSTR_INDEX_EXPOSER)
.apply(Term::var("tuple_index_0")),
)
.if_then_else(
Term::var("equals_integer_0_curried")
.apply(
Term::var(CONSTR_INDEX_EXPOSER)
.apply(Term::var("tuple_index_1")),
)
.if_then_else(
Term::bool(false).delay(),
Term::var("clauses_delayed"),
)
.force()
.delay(),
Term::var("clauses_delayed"),
)
.force()
.lambda("clauses_delayed")
.apply(Term::bool(false).delay())
.delay(),
)
.lambda("equals_integer_1_curried")
.apply(Term::equals_integer().apply(Term::integer(1.into())))
.delay(),
)
.lambda("equals_integer_0_curried")
.apply(Term::equals_integer().apply(Term::integer(0.into())))
.lambda("tuple_index_0")
.apply(Term::fst_pair().apply(Term::var("input")))
.lambda("tuple_index_1")
.apply(Term::snd_pair().apply(Term::var("input")))
.lambda("input")
.apply(
Term::mk_pair_data()
.apply(Term::var("ec1"))
.apply(Term::var("ec2")),
)
.lambda("ec2")
.lambda("ec1"),
)
.apply(Term::data(Data::constr(1, vec![])))
.apply(Term::data(Data::constr(1, vec![])))
.delayed_if_then_else(
Term::bool(true),
Term::bool(true).if_then_else(Term::bool(false), Term::bool(true)),
)
.constr_index_exposer()
.constr_fields_exposer(),
};
compare_optimization(expected, program, |p| p.builtin_curry_reducer());
}
#[test]
fn curry_reducer_test_4() {
let program: Program<Name> = Program {
version: (1, 0, 0),
term: Term::bool(true)
.delayed_if_then_else(
Term::integer(2.into()),
Term::add_integer()
.apply(
Term::add_integer()
.apply(Term::var("x"))
.apply(Term::var("y")),
)
.apply(Term::var("z"))
.lambda("z")
.apply(
Term::index_bytearray()
.apply(Term::byte_string(vec![
1, 2, 4, 8, 16, 32, 64, 128, 255, 255,
]))
.apply(Term::integer(35.into())),
)
.lambda("y")
.apply(
Term::index_bytearray()
.apply(Term::byte_string(vec![
1, 2, 4, 8, 16, 32, 64, 128, 255, 255,
]))
.apply(Term::integer(35.into())),
),
)
.lambda("x")
.apply(
Term::bool(true).delayed_if_then_else(
Term::integer(1.into()),
Term::index_bytearray()
.apply(Term::byte_string(vec![
1, 2, 4, 8, 16, 32, 64, 128, 255, 255,
]))
.apply(Term::integer(35.into())),
),
),
};
let expected = Program {
version: (1, 0, 0),
term: Term::bool(true)
.delayed_if_then_else(
Term::integer(2.into()),
Term::add_integer()
.apply(
Term::add_integer()
.apply(Term::var("x"))
.apply(Term::var("y")),
)
.apply(Term::var("z"))
.lambda("z")
.apply(Term::var("good_curry").apply(Term::integer(35.into())))
.lambda("y")
.apply(Term::var("good_curry").apply(Term::integer(35.into()))),
)
.lambda("x")
.apply(Term::bool(true).delayed_if_then_else(
Term::integer(1.into()),
Term::var("good_curry").apply(Term::integer(35.into())),
))
.lambda("good_curry")
.apply(Term::index_bytearray().apply(Term::byte_string(vec![
1, 2, 4, 8, 16, 32, 64, 128, 255, 255,
]))),
};
compare_optimization(expected, program, |p| p.builtin_curry_reducer());
}
}