aiken/crates/aiken-lang/src/tipo/exhaustive.rs

683 lines
21 KiB
Rust

use crate::{
ast,
tipo::{self, environment::Environment, error::Error, Type},
};
use itertools::Itertools;
use std::{collections::BTreeMap, iter, ops::Deref};
const NIL_NAME: &str = "[]";
const CONS_NAME: &str = "::";
const TUPLE_NAME: &str = "__Tuple";
#[derive(Debug, Clone)]
pub(crate) struct PatternStack(Vec<Pattern>);
impl From<Pattern> for PatternStack {
fn from(value: Pattern) -> Self {
Self(vec![value])
}
}
impl From<Vec<Pattern>> for PatternStack {
fn from(value: Vec<Pattern>) -> Self {
Self(value)
}
}
impl From<PatternStack> for Vec<Pattern> {
fn from(value: PatternStack) -> Self {
value.0
}
}
impl PatternStack {
fn is_empty(&self) -> bool {
self.0.is_empty()
}
fn insert(&mut self, index: usize, element: Pattern) {
self.0.insert(index, element);
}
pub(super) fn head(&self) -> &Pattern {
&self.0[0]
}
fn tail(&self) -> PatternStack {
self.0
.iter()
.skip(1)
.cloned()
.collect::<Vec<Pattern>>()
.into()
}
fn iter(&self) -> impl Iterator<Item = &Pattern> {
self.0.iter()
}
fn chain_tail_to_iter<'a>(&'a self, front: impl Iterator<Item = &'a Pattern>) -> PatternStack {
front
.chain(self.iter().skip(1))
.cloned()
.collect::<Vec<Pattern>>()
.into()
}
fn chain_tail_into_iter(&self, front: impl Iterator<Item = Pattern>) -> PatternStack {
front
.chain(self.iter().skip(1).cloned())
.collect::<Vec<Pattern>>()
.into()
}
// INVARIANT: (length row == N) ==> (length result == arity + N - 1)
fn specialize_row_by_ctor(&self, name: &String, arity: usize) -> Option<PatternStack> {
match self.head() {
Pattern::Constructor(p_name, _, p_args) => {
if p_name == name && p_args.len() == arity {
Some(self.chain_tail_to_iter(p_args.iter()))
} else {
None
}
}
Pattern::Wildcard => {
Some(self.chain_tail_into_iter(vec![Pattern::Wildcard; arity].into_iter()))
}
Pattern::Literal(_) => unreachable!(
"constructors and literals should never align in pattern match exhaustiveness checks."
),
}
}
// INVARIANT: (length row == N) ==> (length result == N-1)
fn specialize_row_by_wildcard(&self) -> Option<PatternStack> {
if self.is_empty() {
return None;
}
match self.head() {
Pattern::Constructor(_, _, _) => None,
Pattern::Literal(_) => None,
Pattern::Wildcard => Some(self.tail()),
}
}
// INVARIANT: (length row == N) ==> (length result == N-1)
fn specialize_row_by_literal(&self, literal: &Literal) -> Option<PatternStack> {
match self.head() {
Pattern::Literal(p_literal) => {
if p_literal == literal {
Some(self.tail())
} else {
None
}
}
Pattern::Wildcard => Some(self.tail()),
Pattern::Constructor(_, _, _) => unreachable!(
"constructors and literals should never align in pattern match exhaustiveness checks."
),
}
}
fn split_at(self, arity: usize) -> (PatternStack, PatternStack) {
let mut rest = self.0;
let mut args = rest.split_off(arity);
std::mem::swap(&mut rest, &mut args);
(args.into(), rest.into())
}
}
#[derive(Debug)]
pub(super) struct Matrix(Vec<PatternStack>);
impl Matrix {
pub(super) fn new() -> Self {
Matrix(vec![])
}
pub(crate) fn is_empty(&self) -> bool {
self.0.is_empty()
}
pub(crate) fn push(&mut self, pattern_stack: PatternStack) {
self.0.push(pattern_stack);
}
/// Iterate over the first component of each row
pub(super) fn iter(&self) -> impl Iterator<Item = &PatternStack> {
self.0.iter()
}
/// Iterate over the first component of each row, mutably
pub(super) fn into_iter(self) -> impl Iterator<Item = PatternStack> {
self.0.into_iter()
}
pub(super) fn concat(self, other: Matrix) -> Matrix {
let mut patterns = self.0;
patterns.extend(other.0);
Matrix(patterns)
}
pub(crate) fn is_complete(&self) -> Complete {
let ctors = self.collect_ctors();
let num_seen = ctors.len();
if num_seen == 0 {
Complete::No
} else {
let (_, alts) = ctors.first_key_value().to_owned().unwrap();
if num_seen == alts.len() {
Complete::Yes(alts.to_vec())
} else {
Complete::No
}
}
}
pub(crate) fn collect_ctors(&self) -> BTreeMap<String, Vec<tipo::ValueConstructor>> {
let mut ctors = BTreeMap::new();
for pattern_stack in self.iter() {
match pattern_stack.head() {
Pattern::Constructor(name, alts, _) => {
ctors.insert(name.clone(), alts.clone());
}
Pattern::Wildcard | Pattern::Literal(_) => {}
}
}
ctors
}
fn specialize_rows_by_ctor(&self, name: &String, arity: usize) -> Matrix {
self.iter()
.filter_map(|p_stack| p_stack.specialize_row_by_ctor(name, arity))
.collect()
}
fn specialize_rows_by_wildcard(&self) -> Matrix {
self.iter()
.filter_map(|p_stack| p_stack.specialize_row_by_wildcard())
.collect()
}
fn specialize_rows_by_literal(&self, literal: &Literal) -> Matrix {
self.iter()
.filter_map(|p_stack| p_stack.specialize_row_by_literal(literal))
.collect()
}
pub(super) fn is_useful(&self, vector: &PatternStack) -> bool {
// No rows are the same as the new vector! The vector is useful!
if self.is_empty() {
return true;
}
// There is nothing left in the new vector, but we still have
// rows that match the same things. This is not a useful vector!
if vector.is_empty() {
return false;
}
let first_pattern = vector.head();
match first_pattern {
Pattern::Constructor(name, _, args) => {
let arity = args.len();
let new_matrix = self.specialize_rows_by_ctor(name, arity);
let new_vector: PatternStack = vector.chain_tail_to_iter(args.iter());
new_matrix.is_useful(&new_vector)
}
Pattern::Wildcard => {
// check if all alts appear in matrix
match self.is_complete() {
Complete::No => {
// This Wildcard is useful because some Ctors are missing.
// But what if a previous row has a Wildcard?
// If so, this one is not useful.
let new_matrix = self.specialize_rows_by_wildcard();
let new_vector = vector.tail();
new_matrix.is_useful(&new_vector)
}
Complete::Yes(alts) => alts.into_iter().any(|alt| {
let tipo::ValueConstructor { variant, .. } = alt;
let (name, arity) = match variant {
tipo::ValueConstructorVariant::Record { name, arity, .. } => {
(name, arity)
}
_ => unreachable!("variant should be a ValueConstructorVariant"),
};
let new_matrix = self.specialize_rows_by_ctor(&name, arity);
let new_vector =
vector.chain_tail_into_iter(vec![Pattern::Wildcard; arity].into_iter());
new_matrix.is_useful(&new_vector)
}),
}
}
Pattern::Literal(literal) => {
let new_matrix: Matrix = self.specialize_rows_by_literal(literal);
let new_vector = vector.tail();
new_matrix.is_useful(&new_vector)
}
}
}
pub(super) fn flatten(self) -> Vec<Pattern> {
self.into_iter().fold(vec![], |mut acc, p_stack| {
acc.extend(p_stack.0);
acc
})
}
// INVARIANTS:
//
// The initial rows "matrix" are all of length 1
// The initial count of items per row "n" is also 1
// The resulting rows are examples of missing patterns
//
pub(super) fn collect_missing_patterns(self, n: usize) -> Matrix {
if self.is_empty() {
return Matrix(vec![vec![Pattern::Wildcard; n].into()]);
}
if n == 0 {
return Matrix::new();
}
let ctors = self.collect_ctors();
let num_seen = ctors.len();
if num_seen == 0 {
let new_matrix = self.specialize_rows_by_wildcard();
let new_matrix = new_matrix.collect_missing_patterns(n - 1);
let new_matrix = new_matrix
.iter()
.map(|p_stack| {
let mut new_p_stack = p_stack.clone();
new_p_stack.insert(0, Pattern::Wildcard);
new_p_stack
})
.collect::<Matrix>();
return new_matrix;
}
let (_, alts) = ctors.first_key_value().unwrap();
if num_seen < alts.len() {
let new_matrix = self.specialize_rows_by_wildcard();
let new_matrix = new_matrix.collect_missing_patterns(n - 1);
let prefix = alts.iter().filter_map(|alt| is_missing(alts, &ctors, alt));
let mut m = Matrix::new();
for p_stack in new_matrix.into_iter() {
for p in prefix.clone() {
let mut p_stack = p_stack.clone();
p_stack.insert(0, p);
m.push(p_stack);
}
}
return m;
}
alts.iter()
.map(|ctor| {
let tipo::ValueConstructor { variant, .. } = ctor;
let (name, arity) = match variant {
tipo::ValueConstructorVariant::Record { name, arity, .. } => (name, arity),
_ => unreachable!("variant should be a ValueConstructorVariant"),
};
let new_matrix = self.specialize_rows_by_ctor(name, *arity);
let new_matrix = new_matrix.collect_missing_patterns(*arity + n - 1);
new_matrix
.into_iter()
.map(|p_stack| recover_ctor(alts.clone(), name, *arity, p_stack))
.collect()
})
.fold(Matrix::new(), |acc, m| acc.concat(m))
}
}
#[derive(Debug)]
pub(crate) enum Complete {
Yes(Vec<tipo::ValueConstructor>),
No,
}
#[derive(Debug, Clone, PartialEq)]
pub(crate) enum Pattern {
Wildcard,
Literal(Literal),
Constructor(String, Vec<tipo::ValueConstructor>, Vec<Pattern>),
}
#[derive(Debug, Clone, PartialEq)]
pub(crate) enum Literal {
Int(String),
ByteArray(Vec<u8>),
}
impl Pattern {
pub(super) fn pretty(self) -> String {
match self {
Pattern::Wildcard => "_".to_string(),
Pattern::Literal(_) => unreachable!("maybe never happens?"),
Pattern::Constructor(name, _alts, args) if name.contains(TUPLE_NAME) => {
let mut pretty_pattern = "(".to_string();
pretty_pattern.push_str(&args.into_iter().map(Pattern::pretty).join(", "));
pretty_pattern.push(')');
pretty_pattern
}
Pattern::Constructor(name, _alts, args) if name == CONS_NAME => {
let mut pretty_pattern = "[".to_string();
let args = args
.into_iter()
.enumerate()
.filter_map(|(index, p)| {
if index == 1 {
let tail = pretty_tail(p);
if tail == "[]" {
None
} else {
Some(tail)
}
} else {
Some(p.pretty())
}
})
.join(", ");
pretty_pattern.push_str(&args);
pretty_pattern.push(']');
pretty_pattern
}
Pattern::Constructor(mut name, alts, args) => {
let field_map = alts.into_iter().find_map(|alt| {
let tipo::ValueConstructor { variant, .. } = alt;
match variant {
tipo::ValueConstructorVariant::Record {
name: r_name,
field_map,
..
} if r_name == name => field_map,
_ => None,
}
});
if let Some(field_map) = field_map {
name.push_str(" { ");
let labels = field_map
.fields
.into_iter()
.sorted_by(|(_, (index_a, _)), (_, (index_b, _))| index_a.cmp(index_b))
.map(|(label, _)| label)
.zip(args)
.map(|(label, arg)| match arg {
Pattern::Wildcard => label,
rest => format!("{label}: {}", rest.pretty()),
})
.join(", ");
name.push_str(&labels);
name.push_str(" }");
name
} else {
if !args.is_empty() {
name.push('(');
name.push_str(&args.into_iter().map(Pattern::pretty).join(", "));
name.push(')');
}
name
}
}
}
}
}
fn pretty_tail(tail: Pattern) -> String {
match tail {
Pattern::Constructor(name, _alts, args) if name == CONS_NAME => {
let mut pretty_pattern = "".to_string();
let args = args
.into_iter()
.enumerate()
.map(|(index, p)| {
if index == 1 {
pretty_tail(p)
} else {
p.pretty()
}
})
.join(", ");
pretty_pattern.push_str(&args);
pretty_pattern
}
Pattern::Wildcard => "..".to_string(),
rest => rest.pretty(),
}
}
fn list_constructors() -> Vec<tipo::ValueConstructor> {
let list_parameter = Type::generic_var(0);
let list_type = Type::list(list_parameter);
vec![
tipo::ValueConstructor {
public: true,
tipo: list_type.clone(),
variant: tipo::ValueConstructorVariant::Record {
name: CONS_NAME.to_string(),
arity: 2,
field_map: None,
location: ast::Span::empty(),
module: "".to_string(),
constructors_count: 2,
},
},
tipo::ValueConstructor {
public: true,
tipo: list_type,
variant: tipo::ValueConstructorVariant::Record {
name: NIL_NAME.to_string(),
arity: 0,
field_map: None,
location: ast::Span::empty(),
module: "".to_string(),
constructors_count: 2,
},
},
]
}
#[allow(clippy::result_large_err)]
pub(super) fn simplify(
environment: &mut Environment,
value: &ast::TypedPattern,
) -> Result<Pattern, Error> {
match value {
ast::Pattern::Int { value, .. } => Ok(Pattern::Literal(Literal::Int(value.clone()))),
ast::Pattern::ByteArray { value, .. } => {
Ok(Pattern::Literal(Literal::ByteArray(value.clone())))
}
ast::Pattern::Assign { pattern, .. } => simplify(environment, pattern.as_ref()),
ast::Pattern::List { elements, tail, .. } => {
let mut p = if let Some(t) = tail {
simplify(environment, t)?
} else {
Pattern::Constructor(NIL_NAME.to_string(), list_constructors(), vec![])
};
for hd in elements.iter().rev() {
p = Pattern::Constructor(
CONS_NAME.to_string(),
list_constructors(),
vec![simplify(environment, hd)?, p],
);
}
Ok(p)
}
ast::Pattern::Constructor {
arguments,
location,
tipo,
spread_location,
constructor: super::PatternConstructor::Record { name, .. },
..
} => {
let (module, type_name, arity) = match tipo.deref() {
tipo::Type::App {
name: type_name,
module,
..
} => (module, type_name, 0),
tipo::Type::Fn { ret, args, .. } => match ret.deref() {
tipo::Type::App {
name: type_name,
module,
..
} => (module, type_name, args.len()),
_ => {
unreachable!("ret should be a Type::App")
}
},
_ => unreachable!("tipo should be a Type::App"),
};
let alts = environment.get_constructors_for_type(module, type_name, *location)?;
let mut args = Vec::new();
for argument in arguments {
args.push(simplify(environment, &argument.value)?);
}
if spread_location.is_some() {
for _ in 0..(arity - arguments.len()) {
args.push(Pattern::Wildcard)
}
}
Ok(Pattern::Constructor(name.to_string(), alts, args))
}
ast::Pattern::Pair { fst, snd, location } => simplify(
environment,
&ast::Pattern::Tuple {
elems: vec![*fst.clone(), *snd.clone()],
location: *location,
},
),
ast::Pattern::Tuple { elems, .. } => {
let mut args = vec![];
for elem in elems {
args.push(simplify(environment, elem)?);
}
Ok(Pattern::Constructor(
TUPLE_NAME.to_string(),
vec![tipo::ValueConstructor {
tipo: tipo::Type::Tuple {
elems: vec![],
alias: None,
}
.into(),
public: true,
variant: tipo::ValueConstructorVariant::Record {
name: TUPLE_NAME.to_string(),
arity: elems.len(),
field_map: None,
location: ast::Span::empty(),
module: "".to_string(),
constructors_count: 1,
},
}],
args,
))
}
ast::Pattern::Var { .. } | ast::Pattern::Discard { .. } => Ok(Pattern::Wildcard),
}
}
impl iter::FromIterator<PatternStack> for Matrix {
fn from_iter<T: IntoIterator<Item = PatternStack>>(iter: T) -> Self {
Matrix(iter.into_iter().collect())
}
}
fn recover_ctor(
alts: Vec<tipo::ValueConstructor>,
name: &str,
arity: usize,
patterns: PatternStack,
) -> PatternStack {
let (args, mut rest) = patterns.split_at(arity);
rest.insert(0, Pattern::Constructor(name.to_string(), alts, args.into()));
rest
}
fn is_missing(
alts: &[tipo::ValueConstructor],
ctors: &BTreeMap<String, Vec<tipo::ValueConstructor>>,
ctor: &tipo::ValueConstructor,
) -> Option<Pattern> {
let tipo::ValueConstructor { variant, .. } = ctor;
let (name, arity) = match variant {
tipo::ValueConstructorVariant::Record { name, arity, .. } => (name, arity),
_ => unreachable!("variant should be a ValueConstructorVariant"),
};
if ctors.contains_key(name) {
None
} else {
Some(Pattern::Constructor(
name.clone(),
alts.to_vec(),
vec![Pattern::Wildcard; *arity],
))
}
}