aiken/crates/uplc/src/machine.rs

662 lines
22 KiB
Rust

use std::rc::Rc;
use crate::ast::{Constant, NamedDeBruijn, Term, Type};
pub mod cost_model;
mod discharge;
mod error;
pub mod eval_result;
pub mod runtime;
pub mod value;
use cost_model::{ExBudget, StepKind};
pub use error::Error;
use pallas::ledger::primitives::babbage::Language;
use self::{
cost_model::CostModel,
runtime::BuiltinRuntime,
value::{Env, Value},
};
enum MachineState {
Return(Context, Value),
Compute(Context, Env, Term<NamedDeBruijn>),
Done(Term<NamedDeBruijn>),
}
#[derive(Clone)]
enum Context {
FrameAwaitArg(Value, Box<Context>),
FrameAwaitFunTerm(Env, Term<NamedDeBruijn>, Box<Context>),
FrameAwaitFunValue(Value, Box<Context>),
FrameForce(Box<Context>),
FrameConstr(
Env,
usize,
Vec<Term<NamedDeBruijn>>,
Vec<Value>,
Box<Context>,
),
FrameCases(Env, Vec<Term<NamedDeBruijn>>, Box<Context>),
NoFrame,
}
pub struct Machine {
costs: CostModel,
pub ex_budget: ExBudget,
slippage: u32,
unbudgeted_steps: [u32; 10],
pub logs: Vec<String>,
version: Language,
}
impl Machine {
pub fn new(
version: Language,
costs: CostModel,
initial_budget: ExBudget,
slippage: u32,
) -> Machine {
Machine {
costs,
ex_budget: initial_budget,
slippage,
unbudgeted_steps: [0; 10],
logs: vec![],
version,
}
}
pub fn run(&mut self, term: Term<NamedDeBruijn>) -> Result<Term<NamedDeBruijn>, Error> {
use MachineState::*;
let startup_budget = self.costs.machine_costs.get(StepKind::StartUp);
self.spend_budget(startup_budget)?;
let mut state = Compute(Context::NoFrame, Rc::new(vec![]), term);
loop {
state = match state {
Compute(context, env, t) => self.compute(context, env, t)?,
Return(context, value) => self.return_compute(context, value)?,
Done(t) => {
return Ok(t);
}
};
}
}
fn compute(
&mut self,
context: Context,
env: Env,
term: Term<NamedDeBruijn>,
) -> Result<MachineState, Error> {
match term {
Term::Var(name) => {
self.step_and_maybe_spend(StepKind::Var)?;
let val = self.lookup_var(name.as_ref(), &env)?;
Ok(MachineState::Return(context, val))
}
Term::Delay(body) => {
self.step_and_maybe_spend(StepKind::Delay)?;
Ok(MachineState::Return(context, Value::Delay(body, env)))
}
Term::Lambda {
parameter_name,
body,
} => {
self.step_and_maybe_spend(StepKind::Lambda)?;
Ok(MachineState::Return(
context,
Value::Lambda {
parameter_name,
body,
env,
},
))
}
Term::Apply { function, argument } => {
self.step_and_maybe_spend(StepKind::Apply)?;
Ok(MachineState::Compute(
Context::FrameAwaitFunTerm(
env.clone(),
argument.as_ref().clone(),
context.into(),
),
env,
function.as_ref().clone(),
))
}
Term::Constant(x) => {
self.step_and_maybe_spend(StepKind::Constant)?;
Ok(MachineState::Return(context, Value::Con(x)))
}
Term::Force(body) => {
self.step_and_maybe_spend(StepKind::Force)?;
Ok(MachineState::Compute(
Context::FrameForce(context.into()),
env,
body.as_ref().clone(),
))
}
Term::Error => Err(Error::EvaluationFailure),
Term::Builtin(fun) => {
self.step_and_maybe_spend(StepKind::Builtin)?;
let runtime: BuiltinRuntime = fun.into();
Ok(MachineState::Return(
context,
Value::Builtin { fun, runtime },
))
}
Term::Constr { tag, mut fields } => {
self.step_and_maybe_spend(StepKind::Constr)?;
if !fields.is_empty() {
let popped_field = fields.remove(0);
Ok(MachineState::Compute(
Context::FrameConstr(env.clone(), tag, fields, vec![], context.into()),
env,
popped_field,
))
} else {
Ok(MachineState::Return(
context,
Value::Constr {
tag,
fields: vec![],
},
))
}
}
Term::Case { constr, branches } => {
self.step_and_maybe_spend(StepKind::Case)?;
Ok(MachineState::Compute(
Context::FrameCases(env.clone(), branches, context.into()),
env,
constr.as_ref().clone(),
))
}
}
}
fn return_compute(&mut self, context: Context, value: Value) -> Result<MachineState, Error> {
match context {
Context::NoFrame => {
if self.unbudgeted_steps[9] > 0 {
self.spend_unbudgeted_steps()?;
}
let term = discharge::value_as_term(value);
Ok(MachineState::Done(term))
}
Context::FrameForce(ctx) => self.force_evaluate(*ctx, value),
Context::FrameAwaitFunTerm(arg_env, arg, ctx) => Ok(MachineState::Compute(
Context::FrameAwaitArg(value, ctx),
arg_env,
arg,
)),
Context::FrameAwaitArg(fun, ctx) => self.apply_evaluate(*ctx, fun, value),
Context::FrameAwaitFunValue(arg, ctx) => self.apply_evaluate(*ctx, value, arg),
Context::FrameConstr(env, tag, mut fields, mut resolved_fields, ctx) => {
resolved_fields.insert(0, value);
if !fields.is_empty() {
let popped_field = fields.remove(0);
Ok(MachineState::Compute(
Context::FrameConstr(env.clone(), tag, fields, resolved_fields, ctx),
env,
popped_field,
))
} else {
Ok(MachineState::Return(
*ctx,
Value::Constr {
tag,
fields: resolved_fields,
},
))
}
}
Context::FrameCases(env, branches, ctx) => match value {
Value::Constr { tag, fields } => match branches.get(tag) {
Some(t) => Ok(MachineState::Compute(
transfer_arg_stack(fields, *ctx),
env,
t.clone(),
)),
None => Err(Error::MissingCaseBranch(
branches,
Value::Constr { tag, fields },
)),
},
v => Err(Error::NonConstrScrutinized(v)),
},
}
}
fn force_evaluate(&mut self, context: Context, value: Value) -> Result<MachineState, Error> {
match value {
Value::Delay(body, env) => {
Ok(MachineState::Compute(context, env, body.as_ref().clone()))
}
Value::Builtin { fun, mut runtime } => {
if runtime.needs_force() {
runtime.consume_force();
let res = if runtime.is_ready() {
self.eval_builtin_app(runtime)?
} else {
Value::Builtin { fun, runtime }
};
Ok(MachineState::Return(context, res))
} else {
let term = discharge::value_as_term(Value::Builtin { fun, runtime });
Err(Error::BuiltinTermArgumentExpected(term))
}
}
rest => Err(Error::NonPolymorphicInstantiation(rest)),
}
}
fn apply_evaluate(
&mut self,
context: Context,
function: Value,
argument: Value,
) -> Result<MachineState, Error> {
match function {
Value::Lambda { body, mut env, .. } => {
let e = Rc::make_mut(&mut env);
e.push(argument);
Ok(MachineState::Compute(
context,
Rc::new(e.clone()),
body.as_ref().clone(),
))
}
Value::Builtin { fun, runtime } => {
if runtime.is_arrow() && !runtime.needs_force() {
let mut runtime = runtime;
runtime.push(argument)?;
let res = if runtime.is_ready() {
self.eval_builtin_app(runtime)?
} else {
Value::Builtin { fun, runtime }
};
Ok(MachineState::Return(context, res))
} else {
let term = discharge::value_as_term(Value::Builtin { fun, runtime });
Err(Error::UnexpectedBuiltinTermArgument(term))
}
}
rest => Err(Error::NonFunctionalApplication(rest, argument)),
}
}
fn eval_builtin_app(&mut self, runtime: BuiltinRuntime) -> Result<Value, Error> {
let cost = runtime.to_ex_budget(&self.costs.builtin_costs);
self.spend_budget(cost)?;
runtime.call(&self.version, &mut self.logs)
}
fn lookup_var(&mut self, name: &NamedDeBruijn, env: &[Value]) -> Result<Value, Error> {
env.get::<usize>(env.len() - usize::from(name.index))
.cloned()
.ok_or_else(|| Error::OpenTermEvaluated(Term::Var(name.clone().into())))
}
fn step_and_maybe_spend(&mut self, step: StepKind) -> Result<(), Error> {
let index = step as u8;
self.unbudgeted_steps[index as usize] += 1;
self.unbudgeted_steps[9] += 1;
if self.unbudgeted_steps[9] >= self.slippage {
self.spend_unbudgeted_steps()?;
}
Ok(())
}
fn spend_unbudgeted_steps(&mut self) -> Result<(), Error> {
for i in 0..self.unbudgeted_steps.len() - 1 {
let mut unspent_step_budget =
self.costs.machine_costs.get(StepKind::try_from(i as u8)?);
unspent_step_budget.occurrences(self.unbudgeted_steps[i] as i64);
self.spend_budget(unspent_step_budget)?;
self.unbudgeted_steps[i] = 0;
}
self.unbudgeted_steps[9] = 0;
Ok(())
}
fn spend_budget(&mut self, spend_budget: ExBudget) -> Result<(), Error> {
self.ex_budget.mem -= spend_budget.mem;
self.ex_budget.cpu -= spend_budget.cpu;
if self.ex_budget.mem < 0 || self.ex_budget.cpu < 0 {
Err(Error::OutOfExError(self.ex_budget))
} else {
Ok(())
}
}
}
fn transfer_arg_stack(mut args: Vec<Value>, ctx: Context) -> Context {
if args.is_empty() {
ctx
} else {
let popped_field = args.remove(0);
transfer_arg_stack(args, Context::FrameAwaitFunValue(popped_field, ctx.into()))
}
}
impl From<&Constant> for Type {
fn from(constant: &Constant) -> Self {
match constant {
Constant::Integer(_) => Type::Integer,
Constant::ByteString(_) => Type::ByteString,
Constant::String(_) => Type::String,
Constant::Unit => Type::Unit,
Constant::Bool(_) => Type::Bool,
Constant::ProtoList(t, _) => Type::List(Rc::new(t.clone())),
Constant::ProtoPair(t1, t2, _, _) => {
Type::Pair(Rc::new(t1.clone()), Rc::new(t2.clone()))
}
Constant::Data(_) => Type::Data,
Constant::Bls12_381G1Element(_) => Type::Bls12_381G1Element,
Constant::Bls12_381G2Element(_) => Type::Bls12_381G2Element,
Constant::Bls12_381MlResult(_) => Type::Bls12_381MlResult,
}
}
}
#[cfg(test)]
mod tests {
use num_bigint::BigInt;
use super::{cost_model::ExBudget, runtime::Compressable};
use crate::{
ast::{Constant, NamedDeBruijn, Program, Term},
builtins::DefaultFunction,
};
#[test]
fn add_big_ints() {
let program: Program<NamedDeBruijn> = Program {
version: (0, 0, 0),
term: Term::Apply {
function: Term::Apply {
function: Term::Builtin(DefaultFunction::AddInteger).into(),
argument: Term::Constant(Constant::Integer(i128::MAX.into()).into()).into(),
}
.into(),
argument: Term::Constant(Constant::Integer(i128::MAX.into()).into()).into(),
},
};
let eval_result = program.eval(ExBudget::default());
let term = eval_result.result().unwrap();
assert_eq!(
term,
Term::Constant(
Constant::Integer(
Into::<BigInt>::into(i128::MAX) + Into::<BigInt>::into(i128::MAX)
)
.into()
)
);
}
#[test]
fn divide_integer() {
let make_program = |fun: DefaultFunction, n: i32, m: i32| Program::<NamedDeBruijn> {
version: (0, 0, 0),
term: Term::Apply {
function: Term::Apply {
function: Term::Builtin(fun).into(),
argument: Term::Constant(Constant::Integer(n.into()).into()).into(),
}
.into(),
argument: Term::Constant(Constant::Integer(m.into()).into()).into(),
},
};
let test_data = vec![
(DefaultFunction::DivideInteger, 8, 3, 2),
(DefaultFunction::DivideInteger, 8, -3, -3),
(DefaultFunction::DivideInteger, -8, 3, -3),
(DefaultFunction::DivideInteger, -8, -3, 2),
(DefaultFunction::QuotientInteger, 8, 3, 2),
(DefaultFunction::QuotientInteger, 8, -3, -2),
(DefaultFunction::QuotientInteger, -8, 3, -2),
(DefaultFunction::QuotientInteger, -8, -3, 2),
(DefaultFunction::RemainderInteger, 8, 3, 2),
(DefaultFunction::RemainderInteger, 8, -3, 2),
(DefaultFunction::RemainderInteger, -8, 3, -2),
(DefaultFunction::RemainderInteger, -8, -3, -2),
(DefaultFunction::ModInteger, 8, 3, 2),
(DefaultFunction::ModInteger, 8, -3, -1),
(DefaultFunction::ModInteger, -8, 3, 1),
(DefaultFunction::ModInteger, -8, -3, -2),
];
for (fun, n, m, result) in test_data {
let eval_result = make_program(fun, n, m).eval(ExBudget::default());
assert_eq!(
eval_result.result().unwrap(),
Term::Constant(Constant::Integer(result.into()).into())
);
}
}
#[test]
fn case_constr_case_0() {
let make_program =
|fun: DefaultFunction, tag: usize, n: i32, m: i32| Program::<NamedDeBruijn> {
version: (0, 0, 0),
term: Term::Case {
constr: Term::Constr {
tag,
fields: vec![
Term::Constant(Constant::Integer(n.into()).into()),
Term::Constant(Constant::Integer(m.into()).into()),
],
}
.into(),
branches: vec![Term::Builtin(fun), Term::subtract_integer()],
},
};
let test_data = vec![
(DefaultFunction::AddInteger, 0, 8, 3, 11),
(DefaultFunction::AddInteger, 1, 8, 3, 5),
];
for (fun, tag, n, m, result) in test_data {
let eval_result = make_program(fun, tag, n, m).eval(ExBudget::max());
assert_eq!(
eval_result.result().unwrap(),
Term::Constant(Constant::Integer(result.into()).into())
);
}
}
#[test]
fn case_constr_case_1() {
let make_program = |tag: usize| Program::<NamedDeBruijn> {
version: (0, 0, 0),
term: Term::Case {
constr: Term::Constr {
tag,
fields: vec![],
}
.into(),
branches: vec![
Term::integer(5.into()),
Term::integer(10.into()),
Term::integer(15.into()),
],
},
};
let test_data = vec![(0, 5), (1, 10), (2, 15)];
for (tag, result) in test_data {
let eval_result = make_program(tag).eval(ExBudget::max());
assert_eq!(
eval_result.result().unwrap(),
Term::Constant(Constant::Integer(result.into()).into())
);
}
}
#[test]
fn bls_g1_add_associative() {
let a = blst::blst_p1::uncompress(&[
0xab, 0xd6, 0x18, 0x64, 0xf5, 0x19, 0x74, 0x80, 0x32, 0x55, 0x1e, 0x42, 0xe0, 0xac,
0x41, 0x7f, 0xd8, 0x28, 0xf0, 0x79, 0x45, 0x4e, 0x3e, 0x3c, 0x98, 0x91, 0xc5, 0xc2,
0x9e, 0xd7, 0xf1, 0x0b, 0xde, 0xcc, 0x04, 0x68, 0x54, 0xe3, 0x93, 0x1c, 0xb7, 0x00,
0x27, 0x79, 0xbd, 0x76, 0xd7, 0x1f,
])
.unwrap();
let b = blst::blst_p1::uncompress(&[
0x95, 0x0d, 0xfd, 0x33, 0xda, 0x26, 0x82, 0x26, 0x0c, 0x76, 0x03, 0x8d, 0xfb, 0x8b,
0xad, 0x6e, 0x84, 0xae, 0x9d, 0x59, 0x9a, 0x3c, 0x15, 0x18, 0x15, 0x94, 0x5a, 0xc1,
0xe6, 0xef, 0x6b, 0x10, 0x27, 0xcd, 0x91, 0x7f, 0x39, 0x07, 0x47, 0x9d, 0x20, 0xd6,
0x36, 0xce, 0x43, 0x7a, 0x41, 0xf5,
])
.unwrap();
let c = blst::blst_p1::uncompress(&[
0xb9, 0x62, 0xfd, 0x0c, 0xc8, 0x10, 0x48, 0xe0, 0xcf, 0x75, 0x57, 0xbf, 0x3e, 0x4b,
0x6e, 0xdc, 0x5a, 0xb4, 0xbf, 0xb3, 0xdc, 0x87, 0xf8, 0x3a, 0xf4, 0x28, 0xb6, 0x30,
0x07, 0x27, 0xb1, 0x39, 0xc4, 0x04, 0xab, 0x15, 0x9b, 0xdf, 0x2e, 0xae, 0xa3, 0xf6,
0x49, 0x90, 0x34, 0x21, 0x53, 0x7f,
])
.unwrap();
let term: Term<NamedDeBruijn> = Term::bls12_381_g1_equal()
.apply(
Term::bls12_381_g1_add().apply(Term::bls12_381_g1(a)).apply(
Term::bls12_381_g1_add()
.apply(Term::bls12_381_g1(b))
.apply(Term::bls12_381_g1(c)),
),
)
.apply(
Term::bls12_381_g1_add()
.apply(
Term::bls12_381_g1_add()
.apply(Term::bls12_381_g1(a))
.apply(Term::bls12_381_g1(b)),
)
.apply(Term::bls12_381_g1(c)),
);
let program = Program {
version: (1, 0, 0),
term,
};
let eval_result = program.eval(Default::default());
let final_term = eval_result.result().unwrap();
assert_eq!(final_term, Term::bool(true))
}
#[test]
fn bls_g2_add_associative() {
let a = blst::blst_p1::uncompress(&[
0xab, 0xd6, 0x18, 0x64, 0xf5, 0x19, 0x74, 0x80, 0x32, 0x55, 0x1e, 0x42, 0xe0, 0xac,
0x41, 0x7f, 0xd8, 0x28, 0xf0, 0x79, 0x45, 0x4e, 0x3e, 0x3c, 0x98, 0x91, 0xc5, 0xc2,
0x9e, 0xd7, 0xf1, 0x0b, 0xde, 0xcc, 0x04, 0x68, 0x54, 0xe3, 0x93, 0x1c, 0xb7, 0x00,
0x27, 0x79, 0xbd, 0x76, 0xd7, 0x1f,
])
.unwrap();
let b = blst::blst_p1::uncompress(&[
0x95, 0x0d, 0xfd, 0x33, 0xda, 0x26, 0x82, 0x26, 0x0c, 0x76, 0x03, 0x8d, 0xfb, 0x8b,
0xad, 0x6e, 0x84, 0xae, 0x9d, 0x59, 0x9a, 0x3c, 0x15, 0x18, 0x15, 0x94, 0x5a, 0xc1,
0xe6, 0xef, 0x6b, 0x10, 0x27, 0xcd, 0x91, 0x7f, 0x39, 0x07, 0x47, 0x9d, 0x20, 0xd6,
0x36, 0xce, 0x43, 0x7a, 0x41, 0xf5,
])
.unwrap();
let c = blst::blst_p1::uncompress(&[
0xb9, 0x62, 0xfd, 0x0c, 0xc8, 0x10, 0x48, 0xe0, 0xcf, 0x75, 0x57, 0xbf, 0x3e, 0x4b,
0x6e, 0xdc, 0x5a, 0xb4, 0xbf, 0xb3, 0xdc, 0x87, 0xf8, 0x3a, 0xf4, 0x28, 0xb6, 0x30,
0x07, 0x27, 0xb1, 0x39, 0xc4, 0x04, 0xab, 0x15, 0x9b, 0xdf, 0x2e, 0xae, 0xa3, 0xf6,
0x49, 0x90, 0x34, 0x21, 0x53, 0x7f,
])
.unwrap();
let term: Term<NamedDeBruijn> = Term::bls12_381_g1_equal()
.apply(
Term::bls12_381_g1_add().apply(Term::bls12_381_g1(a)).apply(
Term::bls12_381_g1_add()
.apply(Term::bls12_381_g1(b))
.apply(Term::bls12_381_g1(c)),
),
)
.apply(
Term::bls12_381_g1_add()
.apply(
Term::bls12_381_g1_add()
.apply(Term::bls12_381_g1(a))
.apply(Term::bls12_381_g1(b)),
)
.apply(Term::bls12_381_g1(c)),
);
let program = Program {
version: (1, 0, 0),
term,
};
let eval_result = program.eval(Default::default());
let final_term = eval_result.result().unwrap();
assert_eq!(final_term, Term::bool(true))
}
}