aiken/crates/aiken-lang/src/builtins.rs

1919 lines
61 KiB
Rust

use crate::{
aiken_fn,
ast::{
well_known, Annotation, ArgName, CallArg, DataType, DataTypeKey, Function,
FunctionAccessKey, ModuleKind, OnTestFailure, RecordConstructor, RecordConstructorArg,
Span, TypedArg, TypedDataType, TypedFunction, UnOp,
},
expr::TypedExpr,
tipo::{
fields::FieldMap, Type, TypeConstructor, TypeInfo, ValueConstructor,
ValueConstructorVariant,
},
IdGenerator,
};
use indexmap::IndexMap;
use std::{collections::HashMap, rc::Rc};
use strum::IntoEnumIterator;
use uplc::{
builder::{CONSTR_FIELDS_EXPOSER, CONSTR_INDEX_EXPOSER},
builtins::DefaultFunction,
};
pub const PRELUDE: &str = "aiken";
pub const BUILTIN: &str = "aiken/builtin";
/// Build a prelude that can be injected
/// into a compiler pipeline
pub fn prelude(id_gen: &IdGenerator) -> TypeInfo {
let mut prelude = TypeInfo {
name: PRELUDE.to_string(),
package: "".to_string(),
kind: ModuleKind::Lib,
types: HashMap::new(),
types_constructors: HashMap::new(),
values: HashMap::new(),
accessors: HashMap::new(),
annotations: HashMap::new(),
};
// Data
prelude.types.insert(
well_known::DATA.to_string(),
TypeConstructor::primitive(Type::data()),
);
// Int
prelude.types.insert(
well_known::INT.to_string(),
TypeConstructor::primitive(Type::int()),
);
// ByteArray
prelude.types.insert(
well_known::BYTE_ARRAY.to_string(),
TypeConstructor::primitive(Type::byte_array()),
);
// Bool
prelude.types.insert(
well_known::BOOL.to_string(),
TypeConstructor::primitive(Type::bool()),
);
prelude.types_constructors.insert(
well_known::BOOL.to_string(),
ValueConstructor::known_enum(
&mut prelude.values,
Type::bool(),
well_known::BOOL_CONSTRUCTORS,
),
);
// G1Element
prelude.types.insert(
well_known::G1_ELEMENT.to_string(),
TypeConstructor::primitive(Type::g1_element()),
);
// G2Element
prelude.types.insert(
well_known::G2_ELEMENT.to_string(),
TypeConstructor::primitive(Type::g2_element()),
);
// MillerLoopResult
prelude.types.insert(
well_known::MILLER_LOOP_RESULT.to_string(),
TypeConstructor::primitive(Type::miller_loop_result()),
);
// Ordering
prelude.types.insert(
well_known::ORDERING.to_string(),
TypeConstructor::primitive(Type::ordering()),
);
prelude.types_constructors.insert(
well_known::ORDERING.to_string(),
ValueConstructor::known_enum(
&mut prelude.values,
Type::ordering(),
well_known::ORDERING_CONSTRUCTORS,
),
);
// String
prelude.types.insert(
well_known::STRING.to_string(),
TypeConstructor::primitive(Type::string()),
);
// Void
prelude.types.insert(
well_known::VOID.to_string(),
TypeConstructor::primitive(Type::void()),
);
prelude.types_constructors.insert(
well_known::VOID.to_string(),
ValueConstructor::known_enum(
&mut prelude.values,
Type::void(),
well_known::VOID_CONSTRUCTORS,
),
);
// List(a)
prelude.types.insert(
well_known::LIST.to_string(),
TypeConstructor::primitive(Type::list(Type::generic_var(id_gen.next()))),
);
// Pair(a, b)
prelude.types.insert(
well_known::PAIR.to_string(),
TypeConstructor::primitive(Type::pair(
Type::generic_var(id_gen.next()),
Type::generic_var(id_gen.next()),
)),
);
prelude.types_constructors.insert(
well_known::PAIR.to_string(),
vec![well_known::PAIR.to_string()],
);
// Pairs<k, v> = List<Pair<k, v>>
prelude.types.insert(
well_known::PAIRS.to_string(),
TypeConstructor::primitive(Type::map(
Type::generic_var(id_gen.next()),
Type::generic_var(id_gen.next()),
)),
);
// Option(value)
let option_value = Type::generic_var(id_gen.next());
prelude.types.insert(
well_known::OPTION.to_string(),
TypeConstructor::primitive(Type::option(option_value.clone())),
);
let some_type = Type::function(
vec![option_value.clone()],
Type::option(option_value.clone()),
);
let none_type = Type::option(option_value);
prelude.types_constructors.insert(
well_known::OPTION.to_string(),
ValueConstructor::known_adt(
&mut prelude.values,
&[
(well_known::OPTION_CONSTRUCTORS[0], some_type),
(well_known::OPTION_CONSTRUCTORS[1], none_type),
],
),
);
// Never
prelude.types.insert(
well_known::NEVER.to_string(),
TypeConstructor::primitive(Type::never()),
);
prelude.types_constructors.insert(
well_known::NEVER.to_string(),
ValueConstructor::known_adt(
&mut prelude.values,
&[(well_known::NEVER_CONSTRUCTORS[1], Type::never())],
),
);
// Cardano ScriptContext
prelude.types.insert(
well_known::SCRIPT_CONTEXT.to_string(),
TypeConstructor::primitive(Type::script_context()),
);
prelude.types_constructors.insert(
well_known::SCRIPT_CONTEXT.to_string(),
vec![
well_known::SCRIPT_CONTEXT_TRANSACTION.to_string(),
well_known::SCRIPT_CONTEXT_REDEEMER.to_string(),
well_known::SCRIPT_CONTEXT_PURPOSE.to_string(),
],
);
// Cardano ScriptPurpose
prelude.types.insert(
well_known::SCRIPT_PURPOSE.to_string(),
TypeConstructor::primitive(Type::script_purpose()),
);
prelude.types_constructors.insert(
well_known::SCRIPT_PURPOSE.to_string(),
ValueConstructor::known_adt(
&mut prelude.values,
&[
(
well_known::SCRIPT_PURPOSE_MINT,
Type::function(vec![Type::data()], Type::script_purpose()),
),
(
well_known::SCRIPT_PURPOSE_SPEND,
Type::function(
vec![Type::data(), Type::option(Type::data())],
Type::script_purpose(),
),
),
(
well_known::SCRIPT_PURPOSE_WITHDRAW,
Type::function(vec![Type::data()], Type::script_purpose()),
),
(
well_known::SCRIPT_PURPOSE_PUBLISH,
Type::function(vec![Type::int(), Type::data()], Type::script_purpose()),
),
(
well_known::SCRIPT_PURPOSE_VOTE,
Type::function(vec![Type::data()], Type::script_purpose()),
),
(
well_known::SCRIPT_PURPOSE_PROPOSE,
Type::function(vec![Type::int(), Type::data()], Type::script_purpose()),
),
],
),
);
// not
prelude.values.insert(
"not".to_string(),
ValueConstructor::public(
Type::function(vec![Type::bool()], Type::bool()),
ValueConstructorVariant::ModuleFn {
name: "not".to_string(),
field_map: None,
module: "".to_string(),
arity: 1,
location: Span::empty(),
builtin: None,
},
),
);
// identity
let identity_var = Type::generic_var(id_gen.next());
prelude.values.insert(
"identity".to_string(),
ValueConstructor::public(
Type::function(vec![identity_var.clone()], identity_var),
ValueConstructorVariant::ModuleFn {
name: "identity".to_string(),
field_map: None,
module: "".to_string(),
arity: 1,
location: Span::empty(),
builtin: None,
},
),
);
// enumerate
let enumerate_a = Type::generic_var(id_gen.next());
let enumerate_b = Type::generic_var(id_gen.next());
prelude.values.insert(
"enumerate".to_string(),
ValueConstructor::public(
Type::function(
vec![
Type::list(enumerate_a.clone()),
enumerate_b.clone(),
Type::function(
vec![enumerate_a.clone(), enumerate_b.clone()],
enumerate_b.clone(),
),
Type::function(
vec![enumerate_a.clone(), enumerate_b.clone()],
enumerate_b.clone(),
),
],
enumerate_b,
),
ValueConstructorVariant::ModuleFn {
name: "enumerate".to_string(),
field_map: None,
module: "".to_string(),
arity: 4,
location: Span::empty(),
builtin: None,
},
),
);
// encode_base16
prelude.values.insert(
"encode_base16".to_string(),
ValueConstructor::public(
Type::function(
vec![Type::byte_array(), Type::int(), Type::byte_array()],
Type::byte_array(),
),
ValueConstructorVariant::ModuleFn {
name: "encode_base16".to_string(),
field_map: None,
module: "".to_string(),
arity: 3,
location: Span::empty(),
builtin: None,
},
),
);
// from_int
prelude.values.insert(
"from_int".to_string(),
ValueConstructor::public(
Type::function(vec![Type::int(), Type::byte_array()], Type::byte_array()),
ValueConstructorVariant::ModuleFn {
name: "from_int".to_string(),
field_map: None,
module: "".to_string(),
arity: 2,
location: Span::empty(),
builtin: None,
},
),
);
// do_from_int
prelude.values.insert(
"do_from_int".to_string(),
ValueConstructor::public(
Type::function(vec![Type::int(), Type::byte_array()], Type::byte_array()),
ValueConstructorVariant::ModuleFn {
name: "do_from_int".to_string(),
field_map: None,
module: "".to_string(),
arity: 2,
location: Span::empty(),
builtin: None,
},
),
);
// diagnostic
prelude.values.insert(
"diagnostic".to_string(),
ValueConstructor::public(
Type::function(vec![Type::data(), Type::byte_array()], Type::byte_array()),
ValueConstructorVariant::ModuleFn {
name: "diagnostic".to_string(),
field_map: None,
module: "".to_string(),
arity: 2,
location: Span::empty(),
builtin: None,
},
),
);
// always
let always_a_var = Type::generic_var(id_gen.next());
let always_b_var = Type::generic_var(id_gen.next());
prelude.values.insert(
"always".to_string(),
ValueConstructor::public(
Type::function(vec![always_a_var.clone(), always_b_var], always_a_var),
ValueConstructorVariant::ModuleFn {
name: "always".to_string(),
field_map: None,
module: "".to_string(),
arity: 2,
location: Span::empty(),
builtin: None,
},
),
);
// flip
let flip_a_var = Type::generic_var(id_gen.next());
let flip_b_var = Type::generic_var(id_gen.next());
let flip_c_var = Type::generic_var(id_gen.next());
let input_type = Type::function(
vec![flip_a_var.clone(), flip_b_var.clone()],
flip_c_var.clone(),
);
let return_type = Type::function(vec![flip_b_var, flip_a_var], flip_c_var);
prelude.values.insert(
"flip".to_string(),
ValueConstructor::public(
Type::function(vec![input_type], return_type),
ValueConstructorVariant::ModuleFn {
name: "flip".to_string(),
field_map: None,
module: "".to_string(),
arity: 1,
location: Span::empty(),
builtin: None,
},
),
);
// PRNG
//
// pub type PRNG {
// Seeded { seed: ByteArray, choices: ByteArray }
// Replayed { cursor: Int, choices: ByteArray }
// }
prelude.types.insert(
well_known::PRNG.to_string(),
TypeConstructor::primitive(Type::prng()),
);
prelude.types_constructors.insert(
well_known::PRNG.to_string(),
vec!["Seeded".to_string(), "Replayed".to_string()],
);
let mut seeded_fields = HashMap::new();
seeded_fields.insert("seed".to_string(), (0, Span::empty()));
seeded_fields.insert("choices".to_string(), (1, Span::empty()));
prelude.values.insert(
"Seeded".to_string(),
ValueConstructor::public(
Type::function(vec![Type::byte_array(), Type::byte_array()], Type::prng()),
ValueConstructorVariant::Record {
module: "".into(),
name: "Seeded".to_string(),
field_map: Some(FieldMap {
arity: 2,
fields: seeded_fields,
is_function: false,
}),
arity: 2,
location: Span::empty(),
constructors_count: 2,
},
),
);
let mut replayed_fields = HashMap::new();
replayed_fields.insert("cursor".to_string(), (0, Span::empty()));
replayed_fields.insert("choices".to_string(), (1, Span::empty()));
prelude.values.insert(
"Replayed".to_string(),
ValueConstructor::public(
Type::function(vec![Type::int(), Type::byte_array()], Type::prng()),
ValueConstructorVariant::Record {
module: "".into(),
name: "Replayed".to_string(),
field_map: Some(FieldMap {
arity: 2,
fields: replayed_fields,
is_function: false,
}),
arity: 2,
location: Span::empty(),
constructors_count: 2,
},
),
);
// Fuzzer
//
// pub type Fuzzer<a> =
// fn(PRNG) -> Option<(PRNG, a)>
let fuzzer_value = Type::generic_var(id_gen.next());
prelude.types.insert(
well_known::FUZZER.to_string(),
TypeConstructor {
location: Span::empty(),
parameters: vec![fuzzer_value.clone()],
tipo: Type::fuzzer(fuzzer_value),
module: "".to_string(),
public: true,
},
);
prelude
}
pub fn plutus(id_gen: &IdGenerator) -> TypeInfo {
let mut plutus = TypeInfo {
name: BUILTIN.to_string(),
package: "".to_string(),
kind: ModuleKind::Lib,
types: HashMap::new(),
types_constructors: HashMap::new(),
values: HashMap::new(),
accessors: HashMap::new(),
annotations: HashMap::new(),
};
for builtin in DefaultFunction::iter() {
let value = from_default_function(builtin, id_gen);
plutus.values.insert(builtin.aiken_name(), value);
}
let index_tipo = Type::function(vec![Type::data()], Type::int());
plutus.values.insert(
"unconstr_index".to_string(),
ValueConstructor::public(
index_tipo,
ValueConstructorVariant::ModuleFn {
name: "unconstr_index".to_string(),
field_map: None,
module: "aiken/builtin".to_string(),
arity: 1,
location: Span::empty(),
builtin: None,
},
),
);
let fields_tipo = Type::function(vec![Type::data()], Type::list(Type::data()));
plutus.values.insert(
"unconstr_fields".to_string(),
ValueConstructor::public(
fields_tipo,
ValueConstructorVariant::ModuleFn {
name: "unconstr_fields".to_string(),
field_map: None,
module: "aiken/builtin".to_string(),
arity: 1,
location: Span::empty(),
builtin: None,
},
),
);
plutus
}
pub fn from_default_function(builtin: DefaultFunction, id_gen: &IdGenerator) -> ValueConstructor {
let (tipo, arity) = match builtin {
DefaultFunction::AddInteger
| DefaultFunction::SubtractInteger
| DefaultFunction::MultiplyInteger
| DefaultFunction::DivideInteger
| DefaultFunction::QuotientInteger
| DefaultFunction::RemainderInteger
| DefaultFunction::ModInteger => {
let tipo = Type::function(vec![Type::int(), Type::int()], Type::int());
(tipo, 2)
}
DefaultFunction::EqualsInteger
| DefaultFunction::LessThanInteger
| DefaultFunction::LessThanEqualsInteger => {
let tipo = Type::function(vec![Type::int(), Type::int()], Type::bool());
(tipo, 2)
}
DefaultFunction::AppendByteString => {
let tipo = Type::function(
vec![Type::byte_array(), Type::byte_array()],
Type::byte_array(),
);
(tipo, 2)
}
DefaultFunction::ConsByteString => {
let tipo = Type::function(vec![Type::int(), Type::byte_array()], Type::byte_array());
(tipo, 2)
}
DefaultFunction::SliceByteString => {
let tipo = Type::function(
vec![Type::int(), Type::int(), Type::byte_array()],
Type::byte_array(),
);
(tipo, 3)
}
DefaultFunction::LengthOfByteString => {
let tipo = Type::function(vec![Type::byte_array()], Type::int());
(tipo, 1)
}
DefaultFunction::IndexByteString => {
let tipo = Type::function(vec![Type::byte_array(), Type::int()], Type::int());
(tipo, 2)
}
DefaultFunction::EqualsByteString
| DefaultFunction::LessThanByteString
| DefaultFunction::LessThanEqualsByteString => {
let tipo = Type::function(vec![Type::byte_array(), Type::byte_array()], Type::bool());
(tipo, 2)
}
DefaultFunction::Sha2_256
| DefaultFunction::Sha3_256
| DefaultFunction::Blake2b_224
| DefaultFunction::Blake2b_256
| DefaultFunction::Keccak_256 => {
let tipo = Type::function(vec![Type::byte_array()], Type::byte_array());
(tipo, 1)
}
DefaultFunction::VerifyEd25519Signature => {
let tipo = Type::function(
vec![Type::byte_array(), Type::byte_array(), Type::byte_array()],
Type::bool(),
);
(tipo, 3)
}
DefaultFunction::VerifyEcdsaSecp256k1Signature => {
let tipo = Type::function(
vec![Type::byte_array(), Type::byte_array(), Type::byte_array()],
Type::bool(),
);
(tipo, 3)
}
DefaultFunction::VerifySchnorrSecp256k1Signature => {
let tipo = Type::function(
vec![Type::byte_array(), Type::byte_array(), Type::byte_array()],
Type::bool(),
);
(tipo, 3)
}
DefaultFunction::AppendString => {
let tipo = Type::function(vec![Type::string(), Type::string()], Type::string());
(tipo, 2)
}
DefaultFunction::EqualsString => {
let tipo = Type::function(vec![Type::string(), Type::string()], Type::bool());
(tipo, 2)
}
DefaultFunction::EncodeUtf8 => {
let tipo = Type::function(vec![Type::string()], Type::byte_array());
(tipo, 1)
}
DefaultFunction::DecodeUtf8 => {
let tipo = Type::function(vec![Type::byte_array()], Type::string());
(tipo, 1)
}
DefaultFunction::IfThenElse => {
let ret = Type::generic_var(id_gen.next());
let tipo = Type::function(vec![Type::bool(), ret.clone(), ret.clone()], ret);
(tipo, 3)
}
DefaultFunction::HeadList => {
let ret = Type::generic_var(id_gen.next());
let tipo = Type::function(vec![Type::list(ret.clone())], ret);
(tipo, 1)
}
DefaultFunction::TailList => {
let ret = Type::list(Type::generic_var(id_gen.next()));
let tipo = Type::function(vec![ret.clone()], ret);
(tipo, 1)
}
DefaultFunction::NullList => {
let ret = Type::list(Type::generic_var(id_gen.next()));
let tipo = Type::function(vec![ret], Type::bool());
(tipo, 1)
}
DefaultFunction::ConstrData => {
let tipo = Type::function(vec![Type::int(), Type::list(Type::data())], Type::data());
(tipo, 2)
}
DefaultFunction::MapData => {
let tipo = Type::function(
vec![Type::list(Type::pair(Type::data(), Type::data()))],
Type::data(),
);
(tipo, 1)
}
DefaultFunction::ListData => {
let tipo = Type::function(vec![Type::list(Type::data())], Type::data());
(tipo, 1)
}
DefaultFunction::IData => {
let tipo = Type::function(vec![Type::int()], Type::data());
(tipo, 1)
}
DefaultFunction::BData => {
let tipo = Type::function(vec![Type::byte_array()], Type::data());
(tipo, 1)
}
DefaultFunction::UnConstrData => {
let tipo = Type::function(
vec![Type::data()],
Type::pair(Type::int(), Type::list(Type::data())),
);
(tipo, 1)
}
DefaultFunction::UnMapData => {
let tipo = Type::function(
vec![Type::data()],
Type::list(Type::pair(Type::data(), Type::data())),
);
(tipo, 1)
}
DefaultFunction::UnListData => {
let tipo = Type::function(vec![Type::data()], Type::list(Type::data()));
(tipo, 1)
}
DefaultFunction::UnIData => {
let tipo = Type::function(vec![Type::data()], Type::int());
(tipo, 1)
}
DefaultFunction::UnBData => {
let tipo = Type::function(vec![Type::data()], Type::byte_array());
(tipo, 1)
}
DefaultFunction::EqualsData => {
let tipo = Type::function(vec![Type::data(), Type::data()], Type::bool());
(tipo, 2)
}
DefaultFunction::SerialiseData => {
let tipo = Type::function(vec![Type::data()], Type::byte_array());
(tipo, 1)
}
DefaultFunction::ChooseData => {
let a = Type::generic_var(id_gen.next());
let tipo = Type::function(
vec![
Type::data(),
a.clone(),
a.clone(),
a.clone(),
a.clone(),
a.clone(),
],
a,
);
(tipo, 6)
}
DefaultFunction::MkPairData => {
let tipo = Type::function(
vec![Type::data(), Type::data()],
Type::pair(Type::data(), Type::data()),
);
(tipo, 2)
}
DefaultFunction::MkNilData => {
let tipo = Type::function(vec![], Type::list(Type::data()));
(tipo, 0)
}
DefaultFunction::MkNilPairData => {
let tipo = Type::function(vec![], Type::list(Type::pair(Type::data(), Type::data())));
(tipo, 0)
}
DefaultFunction::ChooseUnit => {
let a = Type::generic_var(id_gen.next());
let tipo = Type::function(vec![Type::data(), a.clone()], a);
(tipo, 2)
}
DefaultFunction::Trace => {
let a = Type::generic_var(id_gen.next());
let tipo = Type::function(vec![Type::string(), a.clone()], a);
(tipo, 2)
}
DefaultFunction::FstPair => {
let a = Type::generic_var(id_gen.next());
let b = Type::generic_var(id_gen.next());
let tipo = Type::function(vec![Type::pair(a.clone(), b)], a);
(tipo, 1)
}
DefaultFunction::SndPair => {
let a = Type::generic_var(id_gen.next());
let b = Type::generic_var(id_gen.next());
let tipo = Type::function(vec![Type::pair(a, b.clone())], b);
(tipo, 1)
}
DefaultFunction::ChooseList => {
let a = Type::generic_var(id_gen.next());
let b = Type::generic_var(id_gen.next());
let tipo = Type::function(vec![Type::list(a), b.clone(), b.clone()], b);
(tipo, 3)
}
DefaultFunction::MkCons => {
let a = Type::generic_var(id_gen.next());
let tipo = Type::function(vec![a.clone(), Type::list(a.clone())], Type::list(a));
(tipo, 2)
}
DefaultFunction::Bls12_381_G1_Add => {
let tipo = Type::function(
vec![Type::g1_element(), Type::g1_element()],
Type::g1_element(),
);
(tipo, 2)
}
DefaultFunction::Bls12_381_G1_Equal => {
let tipo = Type::function(vec![Type::g1_element(), Type::g1_element()], Type::bool());
(tipo, 2)
}
DefaultFunction::Bls12_381_G1_Neg => {
let tipo = Type::function(vec![Type::g1_element()], Type::g1_element());
(tipo, 1)
}
DefaultFunction::Bls12_381_G1_ScalarMul => {
let tipo = Type::function(vec![Type::int(), Type::g1_element()], Type::g1_element());
(tipo, 2)
}
DefaultFunction::Bls12_381_G1_Compress => {
let tipo = Type::function(vec![Type::g1_element()], Type::byte_array());
(tipo, 1)
}
DefaultFunction::Bls12_381_G1_Uncompress => {
let tipo = Type::function(vec![Type::byte_array()], Type::g1_element());
(tipo, 1)
}
DefaultFunction::Bls12_381_G1_HashToGroup => {
let tipo = Type::function(
vec![Type::byte_array(), Type::byte_array()],
Type::g1_element(),
);
(tipo, 2)
}
DefaultFunction::Bls12_381_G2_Add => {
let tipo = Type::function(
vec![Type::g2_element(), Type::g2_element()],
Type::g2_element(),
);
(tipo, 2)
}
DefaultFunction::Bls12_381_G2_Equal => {
let tipo = Type::function(vec![Type::g2_element(), Type::g2_element()], Type::bool());
(tipo, 2)
}
DefaultFunction::Bls12_381_G2_Neg => {
let tipo = Type::function(vec![Type::g2_element()], Type::g2_element());
(tipo, 1)
}
DefaultFunction::Bls12_381_G2_ScalarMul => {
let tipo = Type::function(vec![Type::int(), Type::g2_element()], Type::g2_element());
(tipo, 2)
}
DefaultFunction::Bls12_381_G2_Compress => {
let tipo = Type::function(vec![Type::g2_element()], Type::byte_array());
(tipo, 1)
}
DefaultFunction::Bls12_381_G2_Uncompress => {
let tipo = Type::function(vec![Type::byte_array()], Type::g2_element());
(tipo, 1)
}
DefaultFunction::Bls12_381_G2_HashToGroup => {
let tipo = Type::function(
vec![Type::byte_array(), Type::byte_array()],
Type::g2_element(),
);
(tipo, 2)
}
DefaultFunction::Bls12_381_MillerLoop => {
let tipo = Type::function(
vec![Type::g1_element(), Type::g2_element()],
Type::miller_loop_result(),
);
(tipo, 2)
}
DefaultFunction::Bls12_381_MulMlResult => {
let tipo = Type::function(
vec![Type::miller_loop_result(), Type::miller_loop_result()],
Type::miller_loop_result(),
);
(tipo, 2)
}
DefaultFunction::Bls12_381_FinalVerify => {
let tipo = Type::function(
vec![Type::miller_loop_result(), Type::miller_loop_result()],
Type::bool(),
);
(tipo, 2)
}
DefaultFunction::IntegerToByteString => {
let tipo = Type::function(
vec![Type::bool(), Type::int(), Type::int()],
Type::byte_array(),
);
(tipo, 3)
}
DefaultFunction::ByteStringToInteger => {
let tipo = Type::function(vec![Type::bool(), Type::byte_array()], Type::int());
(tipo, 2)
}
DefaultFunction::AndByteString => {
let tipo = Type::function(
vec![Type::bool(), Type::byte_array(), Type::byte_array()],
Type::byte_array(),
);
(tipo, 3)
}
DefaultFunction::OrByteString => {
let tipo = Type::function(
vec![Type::bool(), Type::byte_array(), Type::byte_array()],
Type::byte_array(),
);
(tipo, 3)
}
DefaultFunction::XorByteString => {
let tipo = Type::function(
vec![Type::bool(), Type::byte_array(), Type::byte_array()],
Type::byte_array(),
);
(tipo, 3)
}
DefaultFunction::ComplementByteString => {
let tipo = Type::function(vec![Type::byte_array()], Type::byte_array());
(tipo, 1)
}
DefaultFunction::ReadBit => {
let tipo = Type::function(vec![Type::byte_array(), Type::int()], Type::bool());
(tipo, 2)
}
DefaultFunction::WriteBits => {
let tipo = Type::function(
vec![Type::byte_array(), Type::list(Type::int()), Type::bool()],
Type::byte_array(),
);
(tipo, 3)
}
DefaultFunction::ReplicateByte => {
let tipo = Type::function(vec![Type::int(), Type::int()], Type::byte_array());
(tipo, 2)
}
DefaultFunction::ShiftByteString => {
let tipo = Type::function(vec![Type::byte_array(), Type::int()], Type::byte_array());
(tipo, 2)
}
DefaultFunction::RotateByteString => {
let tipo = Type::function(vec![Type::byte_array(), Type::int()], Type::byte_array());
(tipo, 2)
}
DefaultFunction::CountSetBits => {
let tipo = Type::function(vec![Type::byte_array()], Type::int());
(tipo, 1)
}
DefaultFunction::FindFirstSetBit => {
let tipo = Type::function(vec![Type::byte_array()], Type::int());
(tipo, 1)
}
DefaultFunction::Ripemd_160 => {
let tipo = Type::function(vec![Type::byte_array()], Type::byte_array());
(tipo, 1)
} // DefaultFunction::ExpModInteger => {
// let tipo = Type::function(vec![Type::int(), Type::int(), Type::int()], Type::int());
// (tipo, 3)
// }
};
ValueConstructor::public(
tipo,
ValueConstructorVariant::ModuleFn {
name: builtin.aiken_name(),
field_map: None,
module: "".to_string(),
arity,
location: Span::empty(),
builtin: Some(builtin),
},
)
}
pub fn prelude_functions(
id_gen: &IdGenerator,
module_types: &HashMap<String, TypeInfo>,
) -> IndexMap<FunctionAccessKey, TypedFunction> {
let mut functions = IndexMap::new();
let unconstr_index_body = TypedExpr::Call {
location: Span::empty(),
tipo: Type::int(),
fun: TypedExpr::local_var(
CONSTR_INDEX_EXPOSER,
Type::function(vec![Type::data()], Type::int()),
Span::empty(),
)
.into(),
args: vec![CallArg {
label: None,
location: Span::empty(),
value: TypedExpr::Var {
location: Span::empty(),
constructor: ValueConstructor {
public: true,
tipo: Type::data(),
variant: ValueConstructorVariant::LocalVariable {
location: Span::empty(),
},
},
name: "constr".to_string(),
},
}],
};
let unconstr_index_func = Function {
arguments: vec![TypedArg {
arg_name: ArgName::Named {
name: "constr".to_string(),
label: "constr".to_string(),
location: Span::empty(),
},
is_validator_param: false,
doc: None,
location: Span::empty(),
annotation: None,
tipo: Type::data(),
}],
on_test_failure: OnTestFailure::FailImmediately,
doc: Some(
indoc::indoc! {
r#"
/// Access the index of a constr typed as Data. Fails if the Data object is not a constr.
"#
}.to_string()
),
location: Span::empty(),
name: "unconstr_index".to_string(),
public: true,
return_annotation: None,
return_type: Type::int(),
end_position: 0,
body: unconstr_index_body,
};
functions.insert(
FunctionAccessKey {
module_name: "aiken/builtin".to_string(),
function_name: "unconstr_index".to_string(),
},
unconstr_index_func,
);
let unconstr_fields_body = TypedExpr::Call {
location: Span::empty(),
tipo: Type::list(Type::data()),
fun: TypedExpr::local_var(
CONSTR_FIELDS_EXPOSER,
Type::function(vec![Type::data()], Type::list(Type::data())),
Span::empty(),
)
.into(),
args: vec![CallArg {
label: None,
location: Span::empty(),
value: TypedExpr::Var {
location: Span::empty(),
constructor: ValueConstructor {
public: true,
tipo: Type::data(),
variant: ValueConstructorVariant::LocalVariable {
location: Span::empty(),
},
},
name: "constr".to_string(),
},
}],
};
let unconstr_fields_func = Function {
arguments: vec![TypedArg {
arg_name: ArgName::Named {
name: "constr".to_string(),
label: "constr".to_string(),
location: Span::empty(),
},
is_validator_param: false,
doc: None,
location: Span::empty(),
annotation: None,
tipo: Type::data(),
}],
on_test_failure: OnTestFailure::FailImmediately,
doc: Some(
indoc::indoc! {
r#"
/// Access the fields of a constr typed as Data. Fails if the Data object is not a constr.
"#
}.to_string()
),
location: Span::empty(),
name: "unconstr_fields".to_string(),
public: true,
return_annotation: None,
return_type: Type::list(Type::data()),
end_position: 0,
body: unconstr_fields_body,
};
functions.insert(
FunctionAccessKey {
module_name: "aiken/builtin".to_string(),
function_name: "unconstr_fields".to_string(),
},
unconstr_fields_func,
);
// /// Negate the argument. Useful for map/fold and pipelines.
// pub fn not(self: Bool) -> Bool {
// !self
// }
functions.insert(
FunctionAccessKey {
module_name: "".to_string(),
function_name: "not".to_string(),
},
Function {
arguments: vec![TypedArg {
arg_name: ArgName::Named {
name: "self".to_string(),
label: "self".to_string(),
location: Span::empty(),
},
is_validator_param: false,
doc: None,
location: Span::empty(),
annotation: None,
tipo: Type::bool(),
}],
on_test_failure: OnTestFailure::FailImmediately,
doc: Some(
indoc::indoc! {
r#"
/// Like `!`, but as a function. Handy for chaining using the pipe operator `|>` or to pass as a function.
"#
}.to_string()
),
location: Span::empty(),
name: "not".to_string(),
public: true,
return_annotation: None,
return_type: Type::bool(),
end_position: 0,
body: TypedExpr::UnOp {
location: Span::empty(),
tipo: Type::bool(),
op: UnOp::Not,
value: Box::new(TypedExpr::Var {
location: Span::empty(),
constructor: ValueConstructor {
public: true,
tipo: Type::bool(),
variant: ValueConstructorVariant::LocalVariable {
location: Span::empty(),
},
},
name: "self".to_string(),
}),
},
},
);
// /// A function that returns its argument. Handy as a default behavior sometimes.
// pub fn identity(a: a) -> a {
// a
// }
let a_var = Type::generic_var(id_gen.next());
functions.insert(
FunctionAccessKey {
module_name: "".to_string(),
function_name: "identity".to_string(),
},
Function {
arguments: vec![TypedArg {
arg_name: ArgName::Named {
name: "a".to_string(),
label: "a".to_string(),
location: Span::empty(),
},
is_validator_param: false,
location: Span::empty(),
annotation: None,
doc: None,
tipo: a_var.clone(),
}],
on_test_failure: OnTestFailure::FailImmediately,
body: TypedExpr::Var {
location: Span::empty(),
constructor: ValueConstructor {
public: true,
tipo: a_var.clone(),
variant: ValueConstructorVariant::LocalVariable {
location: Span::empty(),
},
},
name: "a".to_string(),
},
doc: Some(
indoc::indoc! {
r#"
A function that returns its argument. Handy as a default behavior sometimes.
"#
}
.to_string(),
),
location: Span::empty(),
name: "identity".to_string(),
public: true,
return_annotation: None,
return_type: a_var,
end_position: 0,
},
);
// /// A function that always return its first argument. Handy in folds and maps.
// pub fn always(a: a, b _b: b) -> a {
// a
// }
let a_var = Type::generic_var(id_gen.next());
let b_var = Type::generic_var(id_gen.next());
functions.insert(
FunctionAccessKey {
module_name: "".to_string(),
function_name: "always".to_string(),
},
Function {
on_test_failure: OnTestFailure::FailImmediately,
arguments: vec![
TypedArg {
arg_name: ArgName::Named {
name: "a".to_string(),
label: "a".to_string(),
location: Span::empty(),
},
is_validator_param: false,
location: Span::empty(),
annotation: None,
doc: None,
tipo: a_var.clone(),
},
TypedArg {
arg_name: ArgName::Discarded {
name: "_b".to_string(),
label: "_b".to_string(),
location: Span::empty(),
},
is_validator_param: false,
location: Span::empty(),
annotation: None,
doc: None,
tipo: b_var,
},
],
body: TypedExpr::Var {
location: Span::empty(),
constructor: ValueConstructor {
public: true,
tipo: a_var.clone(),
variant: ValueConstructorVariant::LocalVariable {
location: Span::empty(),
},
},
name: "a".to_string(),
},
doc: Some(
indoc::indoc! {
r#"
A function that always return its first argument. Handy in folds and maps.
```aiken
let always_14 = always(14, _)
always_14(42) == 14
always_14(1337) == 14
always_14(0) == 14
```
"#
}
.to_string(),
),
location: Span::empty(),
name: "always".to_string(),
public: true,
return_annotation: None,
return_type: a_var,
end_position: 0,
},
);
// /// A function that flips the arguments of a function.
// pub fn flip(f: fn(a, b) -> c) -> fn(b, a) -> c {
// fn(b, a) { f(a, b) }
// }
let a_var = Type::generic_var(id_gen.next());
let b_var = Type::generic_var(id_gen.next());
let c_var = Type::generic_var(id_gen.next());
let input_type = Type::function(vec![a_var.clone(), b_var.clone()], c_var.clone());
let return_type = Type::function(vec![b_var.clone(), a_var.clone()], c_var.clone());
functions.insert(
FunctionAccessKey {
module_name: "".to_string(),
function_name: "flip".to_string(),
},
Function {
on_test_failure: OnTestFailure::FailImmediately,
arguments: vec![TypedArg {
arg_name: ArgName::Named {
name: "f".to_string(),
label: "f".to_string(),
location: Span::empty(),
},
is_validator_param: false,
location: Span::empty(),
annotation: None,
doc: None,
tipo: input_type.clone(),
}],
body: TypedExpr::Fn {
location: Span::empty(),
tipo: return_type.clone(),
is_capture: false,
args: vec![
TypedArg {
arg_name: ArgName::Named {
name: "b".to_string(),
label: "b".to_string(),
location: Span::empty(),
},
is_validator_param: false,
location: Span::empty(),
annotation: None,
doc: None,
tipo: b_var.clone(),
},
TypedArg {
arg_name: ArgName::Named {
name: "a".to_string(),
label: "a".to_string(),
location: Span::empty(),
},
is_validator_param: false,
location: Span::empty(),
annotation: None,
doc: None,
tipo: a_var.clone(),
},
],
body: Box::new(TypedExpr::Call {
location: Span::empty(),
tipo: c_var,
fun: Box::new(TypedExpr::Var {
location: Span::empty(),
constructor: ValueConstructor {
public: true,
tipo: input_type,
variant: ValueConstructorVariant::LocalVariable {
location: Span::empty(),
},
},
name: "f".to_string(),
}),
args: vec![
CallArg {
label: None,
location: Span::empty(),
value: TypedExpr::Var {
location: Span::empty(),
constructor: ValueConstructor {
public: true,
tipo: a_var,
variant: ValueConstructorVariant::LocalVariable {
location: Span::empty(),
},
},
name: "a".to_string(),
},
},
CallArg {
label: None,
location: Span::empty(),
value: TypedExpr::Var {
location: Span::empty(),
constructor: ValueConstructor {
public: true,
tipo: b_var,
variant: ValueConstructorVariant::LocalVariable {
location: Span::empty(),
},
},
name: "b".to_string(),
},
},
],
}),
return_annotation: None,
},
doc: Some(
indoc::indoc! {
r#"
A function that flips the arguments of a function.
```aiken
pub fn titleize(left: String, right: String) {}
titleize("Hello", "World") // "Hello, World!"
flip(titleize)("Hello", "World") // "World, Hello!"
```
"#
}
.to_string(),
),
location: Span::empty(),
name: "flip".to_string(),
public: true,
return_annotation: None,
return_type,
end_position: 0,
},
);
functions.insert(
FunctionAccessKey {
module_name: "".to_string(),
function_name: "enumerate".to_string(),
},
aiken_fn!(
&module_types,
&id_gen,
r#"
fn enumerate(
self: List<a>,
zero: b,
with: fn(a, b) -> b,
last: fn(a, b) -> b,
) -> b {
when self is {
[] -> zero
[x] -> last(x, zero)
[x, ..xs] -> with(x, enumerate(xs, zero, with, last))
}
}
"#
),
);
functions.insert(
FunctionAccessKey {
module_name: "".to_string(),
function_name: "encode_base16".to_string(),
},
aiken_fn!(
&module_types,
&id_gen,
r#"
use aiken/builtin
fn encode_base16(bytes: ByteArray, ix: Int, builder: ByteArray) -> ByteArray {
if ix < 0 {
builder
} else {
let byte = builtin.index_bytearray(bytes, ix)
let msb = byte / 16
let lsb = byte % 16
let builder =
builtin.cons_bytearray(
msb + if msb < 10 {
48
} else {
55
},
builtin.cons_bytearray(
lsb + if lsb < 10 {
48
} else {
55
},
builder,
),
)
encode_base16(bytes, ix - 1, builder)
}
}
"#
),
);
functions.insert(
FunctionAccessKey {
module_name: "".to_string(),
function_name: "do_from_int".to_string(),
},
aiken_fn!(
&module_types,
&id_gen,
r#"
use aiken/builtin
fn do_from_int(i: Int, digits: ByteArray) -> ByteArray {
if i <= 0 {
digits
} else {
do_from_int(
builtin.quotient_integer(i, 10),
builtin.cons_bytearray(builtin.remainder_integer(i, 10) + 48, digits),
)
}
}
"#
),
);
functions.insert(
FunctionAccessKey {
module_name: "".to_string(),
function_name: "from_int".to_string(),
},
aiken_fn!(
&module_types,
&id_gen,
r#"
use aiken/builtin
/// Encode an integer into UTF-8.
fn from_int(i: Int, digits: ByteArray) -> ByteArray {
if i == 0 {
builtin.append_bytearray(#"30", digits)
} else if i < 0 {
builtin.append_bytearray(#"2d", from_int(-i, digits))
} else {
do_from_int(
builtin.quotient_integer(i, 10),
builtin.cons_bytearray(builtin.remainder_integer(i, 10) + 48, digits),
)
}
}
"#
),
);
functions.insert(
FunctionAccessKey {
module_name: "".to_string(),
function_name: "diagnostic".to_string(),
},
aiken_fn!(
&module_types,
&id_gen,
r#"
use aiken/builtin
fn diagnostic(self: Data, builder: ByteArray) -> ByteArray {
builtin.choose_data(
self,
{
let Pair(constr, fields) = builtin.un_constr_data(self)
let builder =
when fields is {
[] -> builtin.append_bytearray(#"5b5d29", builder)
_ -> {
let bytes =
enumerate(
fields,
builtin.append_bytearray(#"5d29", builder),
fn(e: Data, st: ByteArray) {
diagnostic(e, builtin.append_bytearray(#"2c20", st))
},
fn(e: Data, st: ByteArray) { diagnostic(e, st) },
)
builtin.append_bytearray(#"5b5f20", bytes)
}
}
let constr_tag =
if constr < 7 {
121 + constr
} else if constr < 128 {
1280 + constr - 7
} else {
fail @"What are you doing? No I mean, seriously."
}
builder
|> builtin.append_bytearray(#"28", _)
|> from_int(constr_tag, _)
},
{
let elems = builtin.un_map_data(self)
when elems is {
[] -> builtin.append_bytearray(#"7b7d", builder)
_ -> {
let bytes =
enumerate(
elems,
builtin.append_bytearray(#"207d", builder),
fn(e: Pair<Data, Data>, st: ByteArray) {
let value = diagnostic(e.2nd, builtin.append_bytearray(#"2c20", st))
diagnostic(e.1st, builtin.append_bytearray(#"3a20", value))
},
fn(e: Pair<Data, Data>, st: ByteArray) {
let value = diagnostic(e.2nd, st)
diagnostic(e.1st, builtin.append_bytearray(#"3a20", value))
},
)
builtin.append_bytearray(#"7b5f20", bytes)
}
}
},
{
let elems = builtin.un_list_data(self)
when elems is {
[] -> builtin.append_bytearray(#"5b5d", builder)
_ -> {
let bytes =
enumerate(
elems,
builtin.append_bytearray(#"5d", builder),
fn(e: Data, st: ByteArray) {
diagnostic(e, builtin.append_bytearray(#"2c20", st))
},
fn(e: Data, st: ByteArray) { diagnostic(e, st) },
)
builtin.append_bytearray(#"5b5f20", bytes)
}
}
},
self
|> builtin.un_i_data
|> from_int(builder),
{
let bytes = builtin.un_b_data(self)
bytes
|> encode_base16(
builtin.length_of_bytearray(bytes) - 1,
builtin.append_bytearray(#"27", builder),
)
|> builtin.append_bytearray(#"6827", _)
},
)
}
"#
),
);
functions
}
pub fn prelude_data_types(id_gen: &IdGenerator) -> IndexMap<DataTypeKey, TypedDataType> {
let mut data_types = IndexMap::new();
// Data
let data_data_type = TypedDataType::data();
data_types.insert(
DataTypeKey {
module_name: "".to_string(),
defined_type: well_known::DATA.to_string(),
},
data_data_type,
);
// Void
let void_data_type = TypedDataType::void();
data_types.insert(
DataTypeKey {
module_name: "".to_string(),
defined_type: well_known::VOID.to_string(),
},
void_data_type,
);
// Ordering
let ordering_data_type = TypedDataType::ordering();
data_types.insert(
DataTypeKey {
module_name: "".to_string(),
defined_type: well_known::ORDERING.to_string(),
},
ordering_data_type,
);
// Bool
let bool_data_type = TypedDataType::bool();
data_types.insert(
DataTypeKey {
module_name: "".to_string(),
defined_type: well_known::BOOL.to_string(),
},
bool_data_type,
);
// Option
let option_data_type = TypedDataType::option(Type::generic_var(id_gen.next()));
data_types.insert(
DataTypeKey {
module_name: "".to_string(),
defined_type: well_known::OPTION.to_string(),
},
option_data_type,
);
// Never
data_types.insert(
DataTypeKey {
module_name: "".to_string(),
defined_type: well_known::NEVER.to_string(),
},
TypedDataType::never(),
);
// PRNG
let prng_data_type = TypedDataType::prng();
data_types.insert(
DataTypeKey {
module_name: "".to_string(),
defined_type: well_known::PRNG.to_string(),
},
prng_data_type,
);
// __ScriptPurpose
let script_purpose_data_type = TypedDataType::script_purpose();
data_types.insert(
DataTypeKey {
module_name: "".to_string(),
defined_type: well_known::SCRIPT_PURPOSE.to_string(),
},
script_purpose_data_type,
);
// __ScriptContext
let script_context_data_type = TypedDataType::script_context();
data_types.insert(
DataTypeKey {
module_name: "".to_string(),
defined_type: well_known::SCRIPT_CONTEXT.to_string(),
},
script_context_data_type,
);
data_types
}
// ----------------------------------------------------------------------------
// TypedDataTypes
//
// TODO: Rewrite in terms of ValueConstructor to avoid duplication and ensure
// consistency with prelude definitions.
impl TypedDataType {
pub fn data() -> Self {
DataType::known_enum(well_known::DATA, &[])
}
pub fn void() -> Self {
DataType::known_enum(well_known::VOID, well_known::VOID_CONSTRUCTORS)
}
pub fn bool() -> Self {
DataType::known_enum(well_known::BOOL, well_known::BOOL_CONSTRUCTORS)
}
pub fn script_purpose() -> Self {
DataType::known_enum(
well_known::SCRIPT_PURPOSE,
well_known::SCRIPT_PURPOSE_CONSTRUCTORS,
)
}
pub fn script_context() -> Self {
DataType::known_enum(
well_known::SCRIPT_CONTEXT,
well_known::SCRIPT_CONTEXT_CONSTRUCTORS,
)
}
pub fn prng() -> Self {
let bytearray_arg = |label: &str| RecordConstructorArg {
label: Some(label.to_string()),
doc: None,
annotation: Annotation::bytearray(Span::empty()),
location: Span::empty(),
tipo: Type::byte_array(),
};
let int_arg = |label: &str| RecordConstructorArg {
label: Some(label.to_string()),
doc: None,
annotation: Annotation::int(Span::empty()),
location: Span::empty(),
tipo: Type::int(),
};
DataType::known_data_type(
well_known::PRNG,
&[
RecordConstructor::known_record(
well_known::PRNG_CONSTRUCTORS[0],
&[bytearray_arg("seed"), bytearray_arg("choices")],
),
RecordConstructor::known_record(
well_known::PRNG_CONSTRUCTORS[1],
&[int_arg("cursor"), bytearray_arg("choices")],
),
],
)
}
pub fn ordering() -> Self {
DataType::known_enum(well_known::ORDERING, well_known::ORDERING_CONSTRUCTORS)
}
pub fn option(tipo: Rc<Type>) -> Self {
DataType {
constructors: vec![
RecordConstructor {
location: Span::empty(),
name: well_known::OPTION_CONSTRUCTORS[0].to_string(),
arguments: vec![RecordConstructorArg {
label: None,
annotation: Annotation::Var {
location: Span::empty(),
name: "a".to_string(),
},
location: Span::empty(),
tipo: tipo.clone(),
doc: None,
}],
doc: None,
sugar: false,
},
RecordConstructor {
location: Span::empty(),
name: well_known::OPTION_CONSTRUCTORS[1].to_string(),
arguments: vec![],
doc: None,
sugar: false,
},
],
doc: None,
location: Span::empty(),
name: well_known::OPTION.to_string(),
opaque: false,
parameters: vec!["a".to_string()],
public: true,
typed_parameters: vec![tipo],
}
}
pub fn never() -> Self {
DataType::known_enum(well_known::NEVER, well_known::NEVER_CONSTRUCTORS)
}
}