aiken/crates/aiken-lang/src/ast.rs

2472 lines
74 KiB
Rust

pub mod well_known;
use crate::{
ast::well_known::VALIDATOR_ELSE,
expr::{TypedExpr, UntypedExpr},
line_numbers::LineNumbers,
parser::token::{Base, Token},
tipo::{PatternConstructor, Type, TypeInfo},
};
use indexmap::IndexMap;
use miette::Diagnostic;
use ordinal::Ordinal;
use owo_colors::{OwoColorize, Stream::Stdout};
use std::{
fmt::{self, Display},
ops::Range,
rc::Rc,
};
use uplc::machine::runtime::Compressable;
use vec1::{vec1, Vec1};
pub const BACKPASS_VARIABLE: &str = "_backpass";
pub const CAPTURE_VARIABLE: &str = "_capture";
pub const PIPE_VARIABLE: &str = "_pipe";
pub const ENV_MODULE: &str = "env";
pub const CONFIG_MODULE: &str = "config";
pub const DEFAULT_ENV_MODULE: &str = "default";
pub const HANDLER_SPEND: &str = "spend";
pub const HANDLER_MINT: &str = "mint";
pub const HANDLER_WITHDRAW: &str = "withdraw";
pub const HANDLER_PUBLISH: &str = "publish";
pub const HANDLER_VOTE: &str = "vote";
pub const HANDLER_PROPOSE: &str = "propose";
pub type TypedModule = Module<TypeInfo, TypedDefinition>;
pub type UntypedModule = Module<(), UntypedDefinition>;
#[derive(Debug, Copy, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub enum ModuleKind {
Lib,
Validator,
Env,
Config,
}
impl ModuleKind {
pub fn is_validator(&self) -> bool {
matches!(self, ModuleKind::Validator)
}
pub fn is_lib(&self) -> bool {
matches!(self, ModuleKind::Lib)
}
pub fn is_env(&self) -> bool {
matches!(self, ModuleKind::Env)
}
pub fn is_config(&self) -> bool {
matches!(self, ModuleKind::Config)
}
}
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub struct Module<Info, Definitions> {
pub name: String,
pub docs: Vec<String>,
pub type_info: Info,
pub definitions: Vec<Definitions>,
pub lines: LineNumbers,
pub kind: ModuleKind,
}
impl<Info, Definitions> Module<Info, Definitions> {
pub fn definitions(&self) -> impl Iterator<Item = &Definitions> {
self.definitions.iter()
}
pub fn into_definitions(self) -> impl Iterator<Item = Definitions> {
self.definitions.into_iter()
}
}
impl UntypedModule {
pub fn dependencies(&self, env_modules: &[String]) -> Vec<String> {
self.definitions()
.flat_map(|def| {
if let Definition::Use(Use { module, .. }) = def {
let name = module.join("/");
if name == ENV_MODULE {
env_modules.to_vec()
} else {
vec![name]
}
} else {
Vec::new()
}
})
.collect()
}
}
impl TypedModule {
pub fn find_node(&self, byte_index: usize) -> Option<Located<'_>> {
self.definitions
.iter()
.find_map(|definition| definition.find_node(byte_index))
}
pub fn has_definition(&self, name: &str) -> bool {
self.definitions.iter().any(|def| match def {
Definition::Fn(f) => f.public && f.name == name,
Definition::TypeAlias(alias) => alias.public && alias.alias == name,
Definition::ModuleConstant(cst) => cst.public && cst.name == name,
Definition::DataType(t) => t.public && t.name == name,
Definition::Use(_) => false,
Definition::Test(_) => false,
Definition::Validator(_) => false,
})
}
pub fn has_constructor(&self, name: &str) -> bool {
self.definitions.iter().any(|def| match def {
Definition::DataType(t) if t.public && !t.opaque => t
.constructors
.iter()
.any(|constructor| constructor.name == name),
Definition::DataType(_) => false,
Definition::Fn(_) => false,
Definition::TypeAlias(_) => false,
Definition::ModuleConstant(_) => false,
Definition::Use(_) => false,
Definition::Test(_) => false,
Definition::Validator(_) => false,
})
}
pub fn validate_module_name(&self) -> Result<(), Error> {
if self.name == "aiken" || self.name == "aiken/builtin" {
return Err(Error::ReservedModuleName {
name: self.name.to_string(),
});
};
for segment in self.name.split('/') {
if str_to_keyword(segment).is_some() {
return Err(Error::KeywordInModuleName {
name: self.name.to_string(),
keyword: segment.to_string(),
});
}
}
Ok(())
}
// TODO: Avoid cloning definitions here. This would likely require having a lifetime on
// 'Project', so that we can enforce that those references live from the ast to here.
pub fn register_definitions(
&self,
functions: &mut IndexMap<FunctionAccessKey, TypedFunction>,
constants: &mut IndexMap<FunctionAccessKey, TypedExpr>,
data_types: &mut IndexMap<DataTypeKey, TypedDataType>,
) {
for def in self.definitions() {
match def {
Definition::Fn(func) => {
functions.insert(
FunctionAccessKey {
module_name: self.name.clone(),
function_name: func.name.clone(),
},
func.clone(),
);
}
Definition::Test(test) => {
functions.insert(
FunctionAccessKey {
module_name: self.name.clone(),
function_name: test.name.clone(),
},
test.clone().into(),
);
}
Definition::DataType(dt) => {
data_types.insert(
DataTypeKey {
module_name: self.name.clone(),
defined_type: dt.name.clone(),
},
dt.clone(),
);
}
Definition::Validator(v) => {
let module_name = self.name.as_str();
for (k, v) in v.into_function_definitions(module_name) {
functions.insert(k, v);
}
}
Definition::ModuleConstant(ModuleConstant { name, value, .. }) => {
constants.insert(
FunctionAccessKey {
module_name: self.name.clone(),
function_name: name.clone(),
},
value.clone(),
);
}
Definition::TypeAlias(_) | Definition::Use(_) => {}
}
}
}
}
fn str_to_keyword(word: &str) -> Option<Token> {
// Alphabetical keywords:
match word {
"expect" => Some(Token::Expect),
"else" => Some(Token::Else),
"is" => Some(Token::Is),
"as" => Some(Token::As),
"when" => Some(Token::When),
"const" => Some(Token::Const),
"fn" => Some(Token::Fn),
"if" => Some(Token::If),
"use" => Some(Token::Use),
"let" => Some(Token::Let),
"opaque" => Some(Token::Opaque),
"pub" => Some(Token::Pub),
"todo" => Some(Token::Todo),
"type" => Some(Token::Type),
"trace" => Some(Token::Trace),
"test" => Some(Token::Test),
// TODO: remove this in a future release
"error" => Some(Token::Fail),
"fail" => Some(Token::Fail),
"and" => Some(Token::And),
"or" => Some(Token::Or),
"validator" => Some(Token::Validator),
"via" => Some(Token::Via),
_ => None,
}
}
pub type TypedFunction = Function<Rc<Type>, TypedExpr, TypedArg>;
pub type UntypedFunction = Function<(), UntypedExpr, UntypedArg>;
impl UntypedFunction {
pub fn is_default_fallback(&self) -> bool {
matches!(
&self.arguments[..],
[UntypedArg {
by: ArgBy::ByName(ArgName::Discarded { .. }),
..
}]
) && matches!(&self.body, UntypedExpr::ErrorTerm { .. })
&& self.name.as_str() == well_known::VALIDATOR_ELSE
}
}
pub type TypedTest = Function<Rc<Type>, TypedExpr, TypedArgVia>;
pub type UntypedTest = Function<(), UntypedExpr, UntypedArgVia>;
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub enum OnTestFailure {
FailImmediately,
SucceedImmediately,
SucceedEventually,
}
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct Function<T, Expr, Arg> {
pub arguments: Vec<Arg>,
pub body: Expr,
pub doc: Option<String>,
pub location: Span,
pub name: String,
pub public: bool,
pub return_annotation: Option<Annotation>,
pub return_type: T,
pub end_position: usize,
pub on_test_failure: OnTestFailure,
}
impl<T, Expr, Arg> Function<T, Expr, Arg> {
pub fn is_spend(&self) -> bool {
self.name == HANDLER_SPEND
}
pub fn is_mint(&self) -> bool {
self.name == HANDLER_MINT
}
}
impl TypedFunction {
pub fn find_node(&self, byte_index: usize) -> Option<Located<'_>> {
self.arguments
.iter()
.find_map(|arg| arg.find_node(byte_index))
.or_else(|| self.body.find_node(byte_index))
.or_else(|| {
self.return_annotation
.as_ref()
.and_then(|a| a.find_node(byte_index))
})
}
pub fn has_valid_purpose_name(&self) -> bool {
self.name == HANDLER_SPEND
|| self.name == HANDLER_PUBLISH
|| self.name == HANDLER_PROPOSE
|| self.name == HANDLER_MINT
|| self.name == HANDLER_WITHDRAW
|| self.name == HANDLER_VOTE
}
pub fn validator_arity(&self) -> usize {
if self.name == HANDLER_SPEND {
4
} else if self.name == HANDLER_MINT
|| self.name == HANDLER_WITHDRAW
|| self.name == HANDLER_VOTE
|| self.name == HANDLER_PUBLISH
|| self.name == HANDLER_PROPOSE
{
3
} else {
panic!(
"tried to get validator arity of a non-validator function {}",
&self.name
);
}
}
}
impl TypedTest {
pub fn find_node(&self, byte_index: usize) -> Option<Located<'_>> {
self.arguments
.iter()
.find_map(|arg| arg.find_node(byte_index))
.or_else(|| self.body.find_node(byte_index))
.or_else(|| {
self.return_annotation
.as_ref()
.and_then(|a| a.find_node(byte_index))
})
}
}
pub type TypedTypeAlias = TypeAlias<Rc<Type>>;
pub type UntypedTypeAlias = TypeAlias<()>;
impl From<UntypedTest> for UntypedFunction {
fn from(f: UntypedTest) -> Self {
Function {
doc: f.doc,
location: f.location,
name: f.name,
public: f.public,
arguments: f.arguments.into_iter().map(|arg| arg.into()).collect(),
return_annotation: f.return_annotation,
return_type: f.return_type,
body: f.body,
on_test_failure: f.on_test_failure,
end_position: f.end_position,
}
}
}
impl From<TypedTest> for TypedFunction {
fn from(f: TypedTest) -> Self {
Function {
doc: f.doc,
location: f.location,
name: f.name,
public: f.public,
arguments: f.arguments.into_iter().map(|arg| arg.into()).collect(),
return_annotation: f.return_annotation,
return_type: f.return_type,
body: f.body,
on_test_failure: f.on_test_failure,
end_position: f.end_position,
}
}
}
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct TypeAlias<T> {
pub alias: String,
pub annotation: Annotation,
pub doc: Option<String>,
pub location: Span,
pub parameters: Vec<String>,
pub public: bool,
pub tipo: T,
}
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub struct DataTypeKey {
pub module_name: String,
pub defined_type: String,
}
#[derive(Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct FunctionAccessKey {
pub module_name: String,
pub function_name: String,
}
pub type UntypedDataType = DataType<()>;
pub type TypedDataType = DataType<Rc<Type>>;
impl TypedDataType {
pub fn known_enum(name: &str, constructors: &[&str]) -> Self {
Self::known_data_type(name, &RecordConstructor::known_enum(constructors))
}
pub fn known_data_type(name: &str, constructors: &[RecordConstructor<Rc<Type>>]) -> Self {
Self {
name: name.to_string(),
constructors: constructors.to_vec(),
location: Span::empty(),
opaque: false,
public: true,
parameters: vec![],
typed_parameters: vec![],
doc: None,
}
}
pub fn is_never(&self) -> bool {
self.name == well_known::NEVER
&& self.constructors.len() == well_known::NEVER_CONSTRUCTORS.len()
&& self.location == Span::empty()
&& self
.constructors
.iter()
.zip(well_known::NEVER_CONSTRUCTORS)
.all(|(constructor, name)| {
name == &constructor.name && constructor.arguments.is_empty()
})
}
}
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct DataType<T> {
pub constructors: Vec<RecordConstructor<T>>,
pub doc: Option<String>,
pub location: Span,
pub name: String,
pub opaque: bool,
pub parameters: Vec<String>,
pub public: bool,
pub typed_parameters: Vec<T>,
}
pub type TypedUse = Use<String>;
pub type UntypedUse = Use<()>;
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub struct Use<PackageName> {
pub as_name: Option<String>,
pub location: Span,
pub module: Vec<String>,
pub package: PackageName,
pub unqualified: Vec<UnqualifiedImport>,
}
pub type TypedModuleConstant = ModuleConstant<TypedExpr>;
pub type UntypedModuleConstant = ModuleConstant<UntypedExpr>;
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct ModuleConstant<Expr> {
pub doc: Option<String>,
pub location: Span,
pub public: bool,
pub name: String,
pub annotation: Option<Annotation>,
pub value: Expr,
}
pub type TypedValidator = Validator<Rc<Type>, TypedArg, TypedExpr>;
pub type UntypedValidator = Validator<(), UntypedArg, UntypedExpr>;
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub enum Purpose {
Spend,
Mint,
Withdraw,
Publish,
Propose,
Vote,
}
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct Validator<T, Arg, Expr> {
pub doc: Option<String>,
pub end_position: usize,
pub handlers: Vec<Function<T, Expr, Arg>>,
pub location: Span,
pub name: String,
pub params: Vec<Arg>,
pub fallback: Function<T, Expr, Arg>,
}
impl<T, Arg, Expr> Validator<T, Arg, Expr> {
pub fn handler_name(validator: &str, handler: &str) -> String {
format!("{}.{}", validator, handler)
}
}
impl UntypedValidator {
pub fn default_fallback(location: Span) -> UntypedFunction {
Function {
arguments: vec![UntypedArg {
by: ArgBy::ByName(ArgName::Discarded {
name: "_".to_string(),
label: "_".to_string(),
location,
}),
location,
annotation: None,
doc: None,
is_validator_param: false,
}],
body: UntypedExpr::fail(None, location),
doc: None,
location,
end_position: location.end - 1,
name: well_known::VALIDATOR_ELSE.to_string(),
public: true,
return_annotation: Some(Annotation::boolean(location)),
return_type: (),
on_test_failure: OnTestFailure::FailImmediately,
}
}
}
impl TypedValidator {
pub fn available_handler_names() -> Vec<String> {
vec![
HANDLER_SPEND.to_string(),
HANDLER_MINT.to_string(),
HANDLER_WITHDRAW.to_string(),
HANDLER_PUBLISH.to_string(),
HANDLER_VOTE.to_string(),
HANDLER_PROPOSE.to_string(),
VALIDATOR_ELSE.to_string(),
]
}
// Define a validator wrapper extracting and matching on script purpose for
// users.
pub fn into_script_context_handler(&self) -> TypedExpr {
let var_context = "__context__";
let var_transaction = "__transaction__";
let var_redeemer = "__redeemer__";
let var_purpose = "__purpose__";
let var_purpose_arg = "__purpose_arg__";
let var_datum = "__datum__";
TypedExpr::sequence(&[
TypedExpr::let_(
TypedExpr::local_var(var_context, Type::script_context(), self.location),
TypedPattern::Constructor {
is_record: false,
location: Span::empty(),
name: well_known::SCRIPT_CONTEXT_CONSTRUCTORS[0].to_string(),
arguments: vec![
CallArg::var(var_transaction, Span::empty()),
CallArg::var(var_redeemer, Span::empty()),
CallArg::var(var_purpose, Span::empty()),
],
module: None,
constructor: PatternConstructor::Record {
name: well_known::SCRIPT_CONTEXT_CONSTRUCTORS[0].to_string(),
field_map: None,
},
spread_location: None,
tipo: Type::function(
vec![Type::data(), Type::data(), Type::script_purpose()],
Type::data(),
),
},
Type::script_context(),
Span::empty(),
),
TypedExpr::When {
location: Span::empty(),
tipo: Type::bool(),
subject: TypedExpr::local_var(var_purpose, Type::script_purpose(), Span::empty())
.into(),
clauses: self
.handlers
.iter()
.map(|handler| {
let datum = if handler.name.as_str() == "spend" {
handler.arguments.first()
} else {
None
};
let redeemer = handler
.arguments
.get(if datum.is_some() { 1 } else { 0 })
.unwrap();
let purpose_arg = handler.arguments.iter().nth_back(1).unwrap();
let transaction = handler.arguments.last().unwrap();
let pattern = match handler.name.as_str() {
"spend" => TypedPattern::spend_purpose(
(var_purpose_arg, purpose_arg.location),
(
var_datum,
datum.map(|x| x.location).unwrap_or(Span::empty()),
),
redeemer.location,
),
"mint" => TypedPattern::mint_purpose(
(var_purpose_arg, purpose_arg.location),
redeemer.location,
),
"withdraw" => TypedPattern::withdraw_purpose(
(var_purpose_arg, purpose_arg.location),
redeemer.location,
),
"publish" => TypedPattern::publish_purpose(
(var_purpose_arg, purpose_arg.location),
redeemer.location,
),
"propose" => TypedPattern::propose_purpose(
(var_purpose_arg, purpose_arg.location),
redeemer.location,
),
"vote" => TypedPattern::vote_purpose(
(var_purpose_arg, purpose_arg.location),
redeemer.location,
),
purpose => {
unreachable!("unexpected/unknown purpose: {:?}", purpose)
}
};
let mut then = vec![];
// expect redeemer: tipo = __redeemer__
then.push(TypedExpr::flexible_expect(
TypedExpr::local_var(var_redeemer, Type::data(), redeemer.location),
TypedPattern::var(redeemer.get_variable_name().unwrap_or("_")),
redeemer.tipo.clone(),
redeemer.location,
));
// Cast the datum, if any
if let Some(datum) = datum {
// expect datum: tipo = __datum__
then.push(TypedExpr::flexible_expect(
TypedExpr::local_var(
var_datum,
Type::option(Type::data()),
datum.location,
),
TypedPattern::var(datum.get_variable_name().unwrap_or("_")),
datum.tipo.clone(),
datum.location,
))
}
// let purpose_arg = __purpose_arg__
if let Some(arg_name) = purpose_arg.get_variable_name() {
then.push(TypedExpr::let_(
TypedExpr::local_var(
var_purpose_arg,
Type::data(),
purpose_arg.location,
),
TypedPattern::var(arg_name),
purpose_arg.tipo.clone(),
purpose_arg.location,
));
}
// let last_arg_name = __transaction__
if let Some(arg_name) = transaction.get_variable_name() {
then.push(TypedExpr::let_(
TypedExpr::local_var(
var_transaction,
Type::data(),
transaction.location,
),
TypedPattern::var(arg_name),
Type::data(),
transaction.location,
));
}
then.push(handler.body.clone());
TypedClause {
location: Span::empty(),
pattern,
then: TypedExpr::Sequence {
location: Span::empty(),
expressions: then,
},
}
})
.chain(std::iter::once(&self.fallback).map(|fallback| {
let arg = fallback.arguments.first().unwrap();
let then = match arg.get_variable_name() {
Some(arg_name) => TypedExpr::sequence(&[
TypedExpr::let_(
TypedExpr::local_var(
var_context,
arg.tipo.clone(),
arg.location,
),
TypedPattern::var(arg_name),
arg.tipo.clone(),
arg.location,
),
fallback.body.clone(),
]),
None => fallback.body.clone(),
};
TypedClause {
location: Span::empty(),
pattern: TypedPattern::Discard {
name: "_".to_string(),
location: arg.location,
},
then,
}
}))
.collect(),
},
])
}
pub fn find_node(&self, byte_index: usize) -> Option<Located<'_>> {
self.params
.iter()
.find_map(|arg| arg.find_node(byte_index))
.or_else(|| {
self.handlers
.iter()
.find_map(|func| func.find_node(byte_index))
})
.or_else(|| self.fallback.find_node(byte_index))
}
pub fn into_function_definitions(
&self,
module_name: &str,
) -> Vec<(FunctionAccessKey, TypedFunction)> {
self.handlers
.iter()
.chain(std::iter::once(&self.fallback))
.map(|handler| {
let mut handler = handler.clone();
handler.arguments = self
.params
.clone()
.into_iter()
.chain(handler.arguments)
.collect();
(
FunctionAccessKey {
module_name: module_name.to_string(),
function_name: TypedValidator::handler_name(
self.name.as_str(),
handler.name.as_str(),
),
},
handler,
)
})
.collect()
}
}
pub type TypedDefinition = Definition<Rc<Type>, TypedArg, TypedExpr, String>;
pub type UntypedDefinition = Definition<(), UntypedArg, UntypedExpr, ()>;
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub enum Definition<T, Arg, Expr, PackageName> {
Fn(Function<T, Expr, Arg>),
TypeAlias(TypeAlias<T>),
DataType(DataType<T>),
Use(Use<PackageName>),
ModuleConstant(ModuleConstant<Expr>),
Test(Function<T, Expr, ArgVia<Arg, Expr>>),
Validator(Validator<T, Arg, Expr>),
}
impl<A, B, C, D> Definition<A, B, C, D> {
pub fn location(&self) -> Span {
match self {
Definition::Fn(Function { location, .. })
| Definition::Use(Use { location, .. })
| Definition::TypeAlias(TypeAlias { location, .. })
| Definition::DataType(DataType { location, .. })
| Definition::ModuleConstant(ModuleConstant { location, .. })
| Definition::Validator(Validator { location, .. })
| Definition::Test(Function { location, .. }) => *location,
}
}
pub fn put_doc(&mut self, new_doc: String) {
match self {
Definition::Use { .. } => (),
Definition::Fn(Function { doc, .. })
| Definition::TypeAlias(TypeAlias { doc, .. })
| Definition::DataType(DataType { doc, .. })
| Definition::ModuleConstant(ModuleConstant { doc, .. })
| Definition::Validator(Validator { doc, .. })
| Definition::Test(Function { doc, .. }) => {
let _ = std::mem::replace(doc, Some(new_doc));
}
}
}
pub fn doc(&self) -> Option<String> {
match self {
Definition::Use { .. } => None,
Definition::Fn(Function { doc, .. })
| Definition::TypeAlias(TypeAlias { doc, .. })
| Definition::DataType(DataType { doc, .. })
| Definition::ModuleConstant(ModuleConstant { doc, .. })
| Definition::Validator(Validator { doc, .. })
| Definition::Test(Function { doc, .. }) => doc.clone(),
}
}
}
impl TypedDefinition {
pub fn find_node(&self, byte_index: usize) -> Option<Located<'_>> {
// Note that the fn span covers the function head, not
// the entire statement.
let located = match self {
Definition::Validator(validator) => validator.find_node(byte_index),
Definition::Fn(func) => func.find_node(byte_index),
Definition::Test(func) => func.find_node(byte_index),
_ => None,
};
if located.is_none() && self.location().contains(byte_index) {
return Some(Located::Definition(self));
}
located
}
}
#[derive(Debug, Clone, PartialEq)]
pub enum Located<'a> {
Expression(&'a TypedExpr),
Pattern(&'a TypedPattern, Rc<Type>),
Definition(&'a TypedDefinition),
Argument(&'a ArgName, Rc<Type>),
Annotation(&'a Annotation),
}
impl<'a> Located<'a> {
pub fn definition_location(&self) -> Option<DefinitionLocation<'_>> {
match self {
Self::Expression(expression) => expression.definition_location(),
Self::Definition(definition) => Some(DefinitionLocation {
module: None,
span: definition.location(),
}),
// TODO: Revise definition location semantic for 'Pattern'
// e.g. for constructors, we might want to show the type definition
// for that constructor.
Self::Pattern(_, _) | Located::Argument(_, _) | Located::Annotation(_) => None,
}
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct DefinitionLocation<'module> {
pub module: Option<&'module str>,
pub span: Span,
}
pub type TypedCallArg = CallArg<TypedExpr>;
pub type ParsedCallArg = CallArg<Option<UntypedExpr>>;
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub struct CallArg<A> {
pub label: Option<String>,
pub location: Span,
pub value: A,
}
impl CallArg<UntypedExpr> {
pub fn is_capture_hole(&self) -> bool {
match &self.value {
UntypedExpr::Var { ref name, .. } => name.contains(CAPTURE_VARIABLE),
_ => false,
}
}
}
impl TypedCallArg {
pub fn find_node(&self, byte_index: usize) -> Option<Located<'_>> {
self.value.find_node(byte_index)
}
}
impl CallArg<TypedPattern> {
pub fn var(name: &str, location: Span) -> Self {
CallArg {
label: None,
location: Span::empty(),
value: TypedPattern::Var {
location,
name: name.to_string(),
},
}
}
}
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct RecordConstructor<T> {
pub location: Span,
pub name: String,
pub arguments: Vec<RecordConstructorArg<T>>,
pub doc: Option<String>,
pub sugar: bool,
}
impl<A> RecordConstructor<A>
where
A: Clone,
{
pub fn put_doc(&mut self, new_doc: String) {
self.doc = Some(new_doc);
}
pub fn known_enum(names: &[&str]) -> Vec<RecordConstructor<A>> {
names
.iter()
.map(|name| RecordConstructor {
location: Span::empty(),
name: name.to_string(),
arguments: vec![],
doc: None,
sugar: false,
})
.collect()
}
pub fn known_record(name: &str, args: &[RecordConstructorArg<A>]) -> Self {
RecordConstructor {
location: Span::empty(),
name: name.to_string(),
arguments: args.to_vec(),
doc: None,
sugar: false,
}
}
}
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct RecordConstructorArg<T> {
pub label: Option<String>,
// ast
pub annotation: Annotation,
pub location: Span,
pub tipo: T,
pub doc: Option<String>,
}
impl<T: PartialEq> RecordConstructorArg<T> {
pub fn put_doc(&mut self, new_doc: String) {
self.doc = Some(new_doc);
}
}
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub enum ArgBy {
ByName(ArgName),
ByPattern(UntypedPattern),
}
impl ArgBy {
pub fn into_extra_assignment(
self,
name: &ArgName,
annotation: Option<&Annotation>,
location: Span,
) -> Option<UntypedExpr> {
match self {
ArgBy::ByName(..) => None,
ArgBy::ByPattern(pattern) => Some(UntypedExpr::Assignment {
location,
value: Box::new(UntypedExpr::Var {
location,
name: name.get_name(),
}),
patterns: vec1![AssignmentPattern {
pattern,
location,
annotation: annotation.cloned(),
}],
kind: AssignmentKind::Let { backpassing: false },
}),
}
}
}
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct UntypedArg {
pub by: ArgBy,
pub location: Span,
pub annotation: Option<Annotation>,
pub doc: Option<String>,
pub is_validator_param: bool,
}
impl UntypedArg {
pub fn arg_name(&self, ix: usize) -> ArgName {
match self.by {
ArgBy::ByName(ref name) => name.clone(),
ArgBy::ByPattern(..) => {
// NOTE: We use ordinal here not only because it's cute, but because
// such a name cannot be parsed to begin with and thus, will not clash
// with any user-defined name.
let name = format!("{}{}_arg", ix + 1, Ordinal::<usize>(ix + 1).suffix());
ArgName::Named {
label: name.clone(),
name,
location: self.location,
}
}
}
}
pub fn set_type(self, tipo: Rc<Type>, ix: usize) -> TypedArg {
TypedArg {
tipo,
arg_name: self.arg_name(ix),
location: self.location,
annotation: self.annotation,
is_validator_param: self.is_validator_param,
doc: self.doc,
}
}
}
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct TypedArg {
pub arg_name: ArgName,
pub location: Span,
pub annotation: Option<Annotation>,
pub doc: Option<String>,
pub is_validator_param: bool,
pub tipo: Rc<Type>,
}
impl TypedArg {
pub fn new(name: &str, tipo: Rc<Type>) -> Self {
TypedArg {
arg_name: ArgName::Named {
name: name.to_string(),
label: name.to_string(),
location: Span::empty(),
},
location: Span::empty(),
annotation: None,
doc: None,
is_validator_param: false,
tipo: tipo.clone(),
}
}
pub fn put_doc(&mut self, new_doc: String) {
self.doc = Some(new_doc);
}
pub fn get_variable_name(&self) -> Option<&str> {
self.arg_name.get_variable_name()
}
pub fn get_name(&self) -> String {
self.arg_name.get_name()
}
pub fn is_capture(&self) -> bool {
if let ArgName::Named {
ref name, location, ..
} = self.arg_name
{
return name.starts_with(CAPTURE_VARIABLE)
&& location == Span::empty()
&& self.location == Span::empty();
}
false
}
pub fn find_node(&self, byte_index: usize) -> Option<Located<'_>> {
if self.arg_name.location().contains(byte_index) {
Some(Located::Argument(&self.arg_name, self.tipo.clone()))
} else {
self.annotation
.as_ref()
.and_then(|annotation| annotation.find_node(byte_index))
}
}
}
pub type TypedArgVia = ArgVia<TypedArg, TypedExpr>;
pub type UntypedArgVia = ArgVia<UntypedArg, UntypedExpr>;
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct ArgVia<Arg, Expr> {
pub arg: Arg,
pub via: Expr,
}
impl<Expr> From<ArgVia<TypedArg, Expr>> for TypedArg {
fn from(this: ArgVia<TypedArg, Expr>) -> TypedArg {
this.arg
}
}
impl<Expr> From<ArgVia<UntypedArg, Expr>> for UntypedArg {
fn from(this: ArgVia<UntypedArg, Expr>) -> UntypedArg {
this.arg
}
}
impl TypedArgVia {
pub fn find_node(&self, byte_index: usize) -> Option<Located<'_>> {
if self.arg.arg_name.location().contains(byte_index) {
Some(Located::Argument(&self.arg.arg_name, self.arg.tipo.clone()))
} else {
// `via` is done first here because when there is no manually written
// annotation, it seems one is injected leading to a `found` returning too early
// because the span of the filled in annotation matches the span of the via expr.
self.via.find_node(byte_index).or_else(|| {
self.arg
.annotation
.as_ref()
.and_then(|annotation| annotation.find_node(byte_index))
})
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub enum ArgName {
Discarded {
name: String,
label: String,
location: Span,
},
Named {
name: String,
label: String,
location: Span,
},
}
impl ArgName {
pub fn location(&self) -> Span {
match self {
ArgName::Discarded { location, .. } => *location,
ArgName::Named { location, .. } => *location,
}
}
/// Returns the name of the variable if it is named, otherwise None.
/// Code gen uses the fact that this returns None to do certain things.
pub fn get_variable_name(&self) -> Option<&str> {
match self {
ArgName::Discarded { .. } => None,
ArgName::Named { name, .. } => Some(name),
}
}
pub fn get_name(&self) -> String {
match self {
ArgName::Discarded { name, .. } | ArgName::Named { name, .. } => name.clone(),
}
}
pub fn get_label(&self) -> String {
match self {
ArgName::Discarded { label, .. } | ArgName::Named { label, .. } => label.to_string(),
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub struct UnqualifiedImport {
pub location: Span,
pub name: String,
pub as_name: Option<String>,
}
impl UnqualifiedImport {
pub fn variable_name(&self) -> &str {
self.as_name.as_deref().unwrap_or(&self.name)
}
}
// TypeAst
#[derive(Debug, Clone, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize)]
pub enum Annotation {
Constructor {
location: Span,
module: Option<String>,
name: String,
arguments: Vec<Self>,
},
Fn {
location: Span,
arguments: Vec<Self>,
ret: Box<Self>,
},
Var {
location: Span,
name: String,
},
Hole {
location: Span,
name: String,
},
Tuple {
location: Span,
elems: Vec<Self>,
},
Pair {
location: Span,
fst: Box<Self>,
snd: Box<Self>,
},
}
impl Annotation {
pub fn location(&self) -> Span {
match self {
Annotation::Fn { location, .. }
| Annotation::Tuple { location, .. }
| Annotation::Var { location, .. }
| Annotation::Hole { location, .. }
| Annotation::Constructor { location, .. }
| Annotation::Pair { location, .. } => *location,
}
}
pub fn boolean(location: Span) -> Self {
Annotation::Constructor {
name: "Bool".to_string(),
module: None,
arguments: vec![],
location,
}
}
pub fn int(location: Span) -> Self {
Annotation::Constructor {
name: "Int".to_string(),
module: None,
arguments: vec![],
location,
}
}
pub fn bytearray(location: Span) -> Self {
Annotation::Constructor {
name: "ByteArray".to_string(),
module: None,
arguments: vec![],
location,
}
}
pub fn data(location: Span) -> Self {
Annotation::Constructor {
name: "Data".to_string(),
module: None,
arguments: vec![],
location,
}
}
pub fn option(inner: Annotation) -> Self {
Annotation::Constructor {
name: "Option".to_string(),
module: None,
location: inner.location(),
arguments: vec![inner],
}
}
pub fn list(inner: Annotation, location: Span) -> Self {
Annotation::Constructor {
name: "List".to_string(),
module: None,
arguments: vec![inner],
location,
}
}
pub fn tuple(elems: Vec<Annotation>, location: Span) -> Self {
Annotation::Tuple { elems, location }
}
pub fn is_logically_equal(&self, other: &Annotation) -> bool {
match self {
Annotation::Constructor {
module,
name,
arguments,
location: _,
} => match other {
Annotation::Constructor {
module: o_module,
name: o_name,
arguments: o_arguments,
location: _,
} => {
module == o_module
&& name == o_name
&& arguments.len() == o_arguments.len()
&& arguments
.iter()
.zip(o_arguments)
.all(|a| a.0.is_logically_equal(a.1))
}
_ => false,
},
Annotation::Tuple { elems, location: _ } => match other {
Annotation::Tuple {
elems: o_elems,
location: _,
} => {
elems.len() == o_elems.len()
&& elems
.iter()
.zip(o_elems)
.all(|a| a.0.is_logically_equal(a.1))
}
_ => false,
},
Annotation::Fn {
arguments,
ret,
location: _,
} => match other {
Annotation::Fn {
arguments: o_arguments,
ret: o_return,
location: _,
} => {
arguments.len() == o_arguments.len()
&& arguments
.iter()
.zip(o_arguments)
.all(|a| a.0.is_logically_equal(a.1))
&& ret.is_logically_equal(o_return)
}
_ => false,
},
Annotation::Var { name, location: _ } => match other {
Annotation::Var {
name: o_name,
location: _,
} => name == o_name,
_ => false,
},
Annotation::Hole { name, location: _ } => match other {
Annotation::Hole {
name: o_name,
location: _,
} => name == o_name,
_ => false,
},
Annotation::Pair { fst, snd, .. } => {
if let Annotation::Pair {
fst: o_fst,
snd: o_snd,
..
} = other
{
fst.is_logically_equal(o_fst) && snd.is_logically_equal(o_snd)
} else {
false
}
}
}
}
pub fn find_node(&self, byte_index: usize) -> Option<Located<'_>> {
if !self.location().contains(byte_index) {
return None;
}
let located = match self {
Annotation::Constructor { arguments, .. } => {
arguments.iter().find_map(|arg| arg.find_node(byte_index))
}
Annotation::Fn { arguments, ret, .. } => arguments
.iter()
.find_map(|arg| arg.find_node(byte_index))
.or_else(|| ret.find_node(byte_index)),
Annotation::Tuple { elems, .. } => {
elems.iter().find_map(|arg| arg.find_node(byte_index))
}
Annotation::Var { .. } | Annotation::Hole { .. } => None,
Annotation::Pair { fst, snd, .. } => fst
.find_node(byte_index)
.or_else(|| snd.find_node(byte_index)),
};
located.or(Some(Located::Annotation(self)))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub enum BinOp {
// Boolean logic
And,
Or,
// Equality
Eq,
NotEq,
// Order comparison
LtInt,
LtEqInt,
GtEqInt,
GtInt,
// Maths
AddInt,
SubInt,
MultInt,
DivInt,
ModInt,
}
impl From<LogicalOpChainKind> for BinOp {
fn from(value: LogicalOpChainKind) -> Self {
match value {
LogicalOpChainKind::And => BinOp::And,
LogicalOpChainKind::Or => BinOp::Or,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub enum UnOp {
/// !
Not,
/// -
Negate,
}
impl BinOp {
pub fn precedence(&self) -> u8 {
// Ensure that this matches the other precedence function for guards
match self {
// Pipe is 0
// Unary operators are 1
Self::Or => 2,
Self::And => 3,
Self::Eq | Self::NotEq | Self::LtInt | Self::LtEqInt | Self::GtEqInt | Self::GtInt => 4,
// Concatenation operators are typically 5, so we skip it.
Self::AddInt | Self::SubInt => 6,
Self::MultInt | Self::DivInt | Self::ModInt => 7,
}
}
}
pub type UntypedPattern = Pattern<(), ()>;
pub type TypedPattern = Pattern<PatternConstructor, Rc<Type>>;
impl TypedPattern {
pub fn var(name: &str) -> Self {
TypedPattern::Var {
name: name.to_string(),
location: Span::empty(),
}
}
pub fn constructor(
name: &str,
arguments: &[CallArg<TypedPattern>],
tipo: Rc<Type>,
location: Span,
) -> Self {
TypedPattern::Constructor {
is_record: false,
location,
name: name.to_string(),
arguments: arguments.to_vec(),
module: None,
constructor: PatternConstructor::Record {
name: name.to_string(),
field_map: None,
},
spread_location: None,
tipo: tipo.clone(),
}
}
pub fn mint_purpose(
(var_purpose_arg, purpose_span): (&str, Span),
redeemer_span: Span,
) -> Self {
TypedPattern::constructor(
well_known::SCRIPT_PURPOSE_MINT,
&[CallArg::var(var_purpose_arg, purpose_span)],
Type::function(vec![Type::byte_array()], Type::script_purpose()),
redeemer_span,
)
}
pub fn spend_purpose(
(var_purpose_arg, purpose_span): (&str, Span),
(var_datum, datum_span): (&str, Span),
redeemer_span: Span,
) -> Self {
TypedPattern::constructor(
well_known::SCRIPT_PURPOSE_SPEND,
&[
CallArg::var(var_purpose_arg, purpose_span),
CallArg::var(var_datum, datum_span),
],
Type::function(
vec![Type::data(), Type::option(Type::data())],
Type::script_purpose(),
),
redeemer_span,
)
}
pub fn withdraw_purpose(
(var_purpose_arg, purpose_span): (&str, Span),
redeemer_span: Span,
) -> Self {
TypedPattern::constructor(
well_known::SCRIPT_PURPOSE_WITHDRAW,
&[CallArg::var(var_purpose_arg, purpose_span)],
Type::function(vec![Type::data()], Type::script_purpose()),
redeemer_span,
)
}
pub fn publish_purpose(
(var_purpose_arg, purpose_span): (&str, Span),
redeemer_span: Span,
) -> Self {
TypedPattern::constructor(
well_known::SCRIPT_PURPOSE_PUBLISH,
&[
CallArg::var("__discarded_purpose_ix__", purpose_span),
CallArg::var(var_purpose_arg, purpose_span),
],
Type::function(vec![Type::int(), Type::data()], Type::script_purpose()),
redeemer_span,
)
}
pub fn vote_purpose(
(var_purpose_arg, purpose_span): (&str, Span),
redeemer_span: Span,
) -> Self {
TypedPattern::constructor(
well_known::SCRIPT_PURPOSE_VOTE,
&[CallArg::var(var_purpose_arg, purpose_span)],
Type::function(vec![Type::data()], Type::script_purpose()),
redeemer_span,
)
}
pub fn propose_purpose(
(var_purpose_arg, purpose_span): (&str, Span),
redeemer_span: Span,
) -> Self {
TypedPattern::constructor(
well_known::SCRIPT_PURPOSE_PROPOSE,
&[
CallArg::var("__discarded_purpose_ix__", purpose_span),
CallArg::var(var_purpose_arg, purpose_span),
],
Type::function(vec![Type::int(), Type::data()], Type::script_purpose()),
redeemer_span,
)
}
}
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub enum Pattern<Constructor, Type> {
Int {
location: Span,
value: String,
base: Base,
},
ByteArray {
location: Span,
value: Vec<u8>,
preferred_format: ByteArrayFormatPreference,
},
/// The creation of a variable.
/// e.g. `expect [this_is_a_var, .._] = x`
/// e.g. `let foo = 42`
Var {
location: Span,
name: String,
},
/// A name given to a sub-pattern using the `as` keyword.
///
/// ```aiken
/// when foo is {
/// [_, _] as the_list -> ...
/// }
/// ```
Assign {
name: String,
location: Span,
pattern: Box<Self>,
},
/// A pattern that binds to any value but does not assign a variable.
/// Always starts with an underscore.
Discard {
name: String,
location: Span,
},
List {
location: Span,
elements: Vec<Self>,
tail: Option<Box<Self>>,
},
/// The constructor for a custom type. Starts with an uppercase letter.
Constructor {
is_record: bool,
location: Span,
name: String,
arguments: Vec<CallArg<Self>>,
module: Option<String>,
constructor: Constructor,
spread_location: Option<Span>,
tipo: Type,
},
Pair {
location: Span,
fst: Box<Self>,
snd: Box<Self>,
},
Tuple {
location: Span,
elems: Vec<Self>,
},
}
impl<A, B> Pattern<A, B> {
pub fn location(&self) -> Span {
match self {
Pattern::Assign { pattern, .. } => pattern.location(),
Pattern::Int { location, .. }
| Pattern::Var { location, .. }
| Pattern::List { location, .. }
| Pattern::Discard { location, .. }
| Pattern::Tuple { location, .. }
| Pattern::Pair { location, .. }
| Pattern::ByteArray { location, .. }
| Pattern::Constructor { location, .. } => *location,
}
}
/// Returns true when a Pattern can be displayed in a flex-break manner (i.e. tries to fit as
/// much as possible on a single line). When false, long lines with several of those patterns
/// will be broken down to one pattern per line.
pub fn is_simple_pattern_to_format(&self) -> bool {
match self {
Self::ByteArray { .. } | Self::Int { .. } | Self::Var { .. } | Self::Discard { .. } => {
true
}
Self::Pair { fst, snd, .. } => {
fst.is_simple_pattern_to_format() && snd.is_simple_pattern_to_format()
}
Self::Tuple { elems, .. } => elems.iter().all(|e| e.is_simple_pattern_to_format()),
Self::List { elements, .. } if elements.len() <= 3 => {
elements.iter().all(|e| e.is_simple_pattern_to_format())
}
Self::Constructor { arguments, .. } => arguments.is_empty(),
_ => false,
}
}
pub fn with_spread(&self) -> bool {
match self {
Pattern::Constructor {
spread_location, ..
} => spread_location.is_some(),
_ => false,
}
}
/// Returns `true` if the pattern is [`Discard`].
///
/// [`Discard`]: Pattern::Discard
pub fn is_discard(&self) -> bool {
matches!(self, Self::Discard { .. })
}
/// Returns `true` if the pattern is [`Var`].
///
/// [`Var`]: Pattern::Discard
pub fn is_var(&self) -> bool {
matches!(self, Self::Var { .. })
}
}
impl UntypedPattern {
pub fn true_(location: Span) -> UntypedPattern {
UntypedPattern::Constructor {
location,
name: "True".to_string(),
arguments: vec![],
constructor: (),
spread_location: None,
tipo: (),
module: None,
is_record: false,
}
}
pub fn collect_identifiers<F>(&self, collect: &mut F)
where
F: FnMut((String, Span)),
{
match self {
Pattern::Var { name, location } => {
collect((name.to_string(), *location));
}
Pattern::List { elements, .. } => {
elements.iter().for_each(|e| e.collect_identifiers(collect));
}
Pattern::Pair { fst, snd, .. } => {
fst.collect_identifiers(collect);
snd.collect_identifiers(collect);
}
Pattern::Tuple { elems, .. } => {
elems.iter().for_each(|e| e.collect_identifiers(collect));
}
Pattern::Constructor { arguments, .. } => {
arguments
.iter()
.for_each(|arg| arg.value.collect_identifiers(collect));
}
Pattern::Int { .. }
| Pattern::ByteArray { .. }
| Pattern::Discard { .. }
| Pattern::Assign { .. } => {}
}
}
}
impl TypedPattern {
pub fn find_node<'a>(&'a self, byte_index: usize, value: &Rc<Type>) -> Option<Located<'a>> {
if !self.location().contains(byte_index) {
return None;
}
match self {
Pattern::Int { .. }
| Pattern::Var { .. }
| Pattern::Assign { .. }
| Pattern::ByteArray { .. }
| Pattern::Discard { .. } => Some(Located::Pattern(self, value.clone())),
Pattern::List { elements, .. }
| Pattern::Tuple {
elems: elements, ..
} => match &**value {
Type::Tuple { elems, .. } => elements
.iter()
.zip(elems.iter())
.find_map(|(e, t)| e.find_node(byte_index, t))
.or(Some(Located::Pattern(self, value.clone()))),
Type::App {
module, name, args, ..
} if module.is_empty() && name == "List" => elements
.iter()
// this is the same as above but this uses
// cycle to repeat the single type arg for a list
// there's probably a cleaner way to re-use the code
// from this branch and the above.
.zip(args.iter().cycle())
.find_map(|(e, t)| e.find_node(byte_index, t))
.or(Some(Located::Pattern(self, value.clone()))),
_ => None,
},
Pattern::Pair { fst, snd, .. } => match &**value {
Type::Pair {
fst: fst_v,
snd: snd_v,
..
} => [fst, snd]
.into_iter()
.zip([fst_v, snd_v].iter())
.find_map(|(e, t)| e.find_node(byte_index, t))
.or(Some(Located::Pattern(self, value.clone()))),
_ => None,
},
Pattern::Constructor {
arguments, tipo, ..
} => match &**tipo {
Type::Fn { args, .. } => arguments
.iter()
.zip(args.iter())
.find_map(|(e, t)| e.value.find_node(byte_index, t))
.or(Some(Located::Pattern(self, value.clone()))),
_ => None,
},
}
}
// TODO: This function definition is weird, see where this is used and how.
pub fn tipo(&self, value: &TypedExpr) -> Option<Rc<Type>> {
match self {
Pattern::Int { .. } => Some(Type::int()),
Pattern::ByteArray { .. } => Some(Type::byte_array()),
Pattern::Constructor { tipo, .. } => Some(tipo.clone()),
Pattern::Var { .. } | Pattern::Assign { .. } | Pattern::Discard { .. } => {
Some(value.tipo())
}
Pattern::List { .. } | Pattern::Tuple { .. } | Pattern::Pair { .. } => None,
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, Copy, serde::Serialize, serde::Deserialize)]
pub enum ByteArrayFormatPreference {
HexadecimalString,
ArrayOfBytes(Base),
Utf8String,
}
#[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub enum CurveType {
Bls12_381(Bls12_381PointType),
}
impl Display for CurveType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
CurveType::Bls12_381(point) => write!(f, "<Bls12_381, {point}>"),
}
}
}
impl From<&Curve> for CurveType {
fn from(value: &Curve) -> Self {
match value {
Curve::Bls12_381(point) => CurveType::Bls12_381(point.into()),
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub enum Bls12_381PointType {
G1,
G2,
}
impl From<&Bls12_381Point> for Bls12_381PointType {
fn from(value: &Bls12_381Point) -> Self {
match value {
Bls12_381Point::G1(_) => Bls12_381PointType::G1,
Bls12_381Point::G2(_) => Bls12_381PointType::G2,
}
}
}
impl Display for Bls12_381PointType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Bls12_381PointType::G1 => write!(f, "G1"),
Bls12_381PointType::G2 => write!(f, "G2"),
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, Copy, serde::Serialize, serde::Deserialize)]
pub enum Curve {
Bls12_381(Bls12_381Point),
}
impl Curve {
pub fn compress(&self) -> Vec<u8> {
match self {
Curve::Bls12_381(point) => match point {
Bls12_381Point::G1(g1) => g1.compress(),
Bls12_381Point::G2(g2) => g2.compress(),
},
}
}
pub fn tipo(&self) -> Rc<Type> {
match self {
Curve::Bls12_381(point) => point.tipo(),
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub enum Bls12_381Point {
G1(blst::blst_p1),
G2(blst::blst_p2),
}
impl serde::Serialize for Bls12_381Point {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
match *self {
Bls12_381Point::G1(ref p1) => {
// Assuming `to_bytes` for compression to Vec<u8>
let bytes = p1.compress();
// Serialize as a tuple with a tag for differentiation
serializer.serialize_newtype_variant("Bls12_381Point", 0, "G1", &bytes)
}
Bls12_381Point::G2(ref p2) => {
let bytes = p2.compress();
serializer.serialize_newtype_variant("Bls12_381Point", 1, "G2", &bytes)
}
}
}
}
impl<'de> serde::Deserialize<'de> for Bls12_381Point {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
enum Field {
G1,
G2,
}
impl<'de> serde::Deserialize<'de> for Field {
fn deserialize<D>(deserializer: D) -> Result<Field, D::Error>
where
D: serde::Deserializer<'de>,
{
struct FieldVisitor;
impl<'de> serde::de::Visitor<'de> for FieldVisitor {
type Value = Field;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("`G1` or `G2`")
}
fn visit_str<E>(self, value: &str) -> Result<Field, E>
where
E: serde::de::Error,
{
match value {
"G1" => Ok(Field::G1),
"G2" => Ok(Field::G2),
_ => Err(serde::de::Error::unknown_field(value, FIELDS)),
}
}
}
deserializer.deserialize_identifier(FieldVisitor)
}
}
struct Bls12_381PointVisitor;
impl<'de> serde::de::Visitor<'de> for Bls12_381PointVisitor {
type Value = Bls12_381Point;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("struct Bls12_381Point")
}
fn visit_seq<V>(self, mut seq: V) -> Result<Bls12_381Point, V::Error>
where
V: serde::de::SeqAccess<'de>,
{
let tag = seq
.next_element::<Field>()?
.ok_or_else(|| serde::de::Error::invalid_length(0, &self))?;
let bytes = seq
.next_element::<Vec<u8>>()?
.ok_or_else(|| serde::de::Error::invalid_length(1, &self))?;
match tag {
Field::G1 => {
let p1 =
blst::blst_p1::uncompress(&bytes).map_err(serde::de::Error::custom)?;
Ok(Bls12_381Point::G1(p1))
}
Field::G2 => {
let p2 =
blst::blst_p2::uncompress(&bytes).map_err(serde::de::Error::custom)?;
Ok(Bls12_381Point::G2(p2))
}
}
}
}
const FIELDS: &[&str] = &["G1", "G2"];
deserializer.deserialize_enum("Bls12_381Point", FIELDS, Bls12_381PointVisitor)
}
}
impl Bls12_381Point {
pub fn tipo(&self) -> Rc<Type> {
match self {
Bls12_381Point::G1(_) => Type::g1_element(),
Bls12_381Point::G2(_) => Type::g2_element(),
}
}
}
impl Default for Bls12_381Point {
fn default() -> Self {
Bls12_381Point::G1(Default::default())
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct AssignmentPattern {
pub pattern: UntypedPattern,
pub annotation: Option<Annotation>,
pub location: Span,
}
impl AssignmentPattern {
pub fn new(
pattern: UntypedPattern,
annotation: Option<Annotation>,
location: Span,
) -> AssignmentPattern {
Self {
pattern,
annotation,
location,
}
}
}
impl From<AssignmentPattern> for Vec1<AssignmentPattern> {
fn from(value: AssignmentPattern) -> Self {
Vec1::new(value)
}
}
pub type UntypedAssignmentKind = AssignmentKind<bool>;
pub type TypedAssignmentKind = AssignmentKind<()>;
#[derive(Debug, Clone, PartialEq, Eq, Copy, serde::Serialize, serde::Deserialize)]
pub enum AssignmentKind<T> {
Is,
Let { backpassing: T },
Expect { backpassing: T },
}
impl From<UntypedAssignmentKind> for TypedAssignmentKind {
fn from(kind: UntypedAssignmentKind) -> TypedAssignmentKind {
match kind {
AssignmentKind::Is => AssignmentKind::Is,
AssignmentKind::Let { .. } => AssignmentKind::Let { backpassing: () },
AssignmentKind::Expect { .. } => AssignmentKind::Expect { backpassing: () },
}
}
}
impl<T> AssignmentKind<T> {
pub fn is_let(&self) -> bool {
matches!(self, AssignmentKind::Let { .. })
}
pub fn is_expect(&self) -> bool {
matches!(self, AssignmentKind::Expect { .. })
}
pub fn if_is(&self) -> bool {
matches!(self, AssignmentKind::Is)
}
pub fn location_offset(&self) -> usize {
match self {
AssignmentKind::Is => 2,
AssignmentKind::Let { .. } => 3,
AssignmentKind::Expect { .. } => 6,
}
}
}
impl AssignmentKind<bool> {
pub fn is_backpassing(&self) -> bool {
match self {
Self::Is => unreachable!(),
Self::Let { backpassing } | Self::Expect { backpassing } => *backpassing,
}
}
}
impl<T: Default> AssignmentKind<T> {
pub fn let_() -> Self {
AssignmentKind::Let {
backpassing: Default::default(),
}
}
pub fn is() -> Self {
AssignmentKind::Is
}
pub fn expect() -> Self {
AssignmentKind::Expect {
backpassing: Default::default(),
}
}
}
pub type MultiPattern<PatternConstructor, Type> = Vec<Pattern<PatternConstructor, Type>>;
pub type UntypedMultiPattern = MultiPattern<(), ()>;
pub type TypedMultiPattern = MultiPattern<PatternConstructor, Rc<Type>>;
#[derive(Debug, Clone, PartialEq)]
pub struct UntypedClause {
pub location: Span,
pub patterns: Vec1<Pattern<(), ()>>,
pub then: UntypedExpr,
}
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct TypedClause {
pub location: Span,
pub pattern: Pattern<PatternConstructor, Rc<Type>>,
pub then: TypedExpr,
}
impl TypedClause {
pub fn location(&self) -> Span {
Span {
start: self.pattern.location().start,
end: self.then.location().end,
}
}
pub fn find_node(&self, byte_index: usize, subject_type: &Rc<Type>) -> Option<Located<'_>> {
self.pattern
.find_node(byte_index, subject_type)
.or_else(|| self.then.find_node(byte_index))
}
}
pub struct UntypedClauseGuard {}
pub type TypedIfBranch = IfBranch<TypedExpr, (TypedPattern, Rc<Type>)>;
pub type UntypedIfBranch = IfBranch<UntypedExpr, AssignmentPattern>;
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub struct IfBranch<Expr, Is> {
pub condition: Expr,
pub body: Expr,
pub is: Option<Is>,
pub location: Span,
}
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct TypedRecordUpdateArg {
pub label: String,
pub location: Span,
pub value: TypedExpr,
pub index: usize,
}
impl TypedRecordUpdateArg {
pub fn find_node(&self, byte_index: usize) -> Option<Located<'_>> {
self.value.find_node(byte_index)
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct UntypedRecordUpdateArg {
pub label: String,
pub location: Span,
pub value: UntypedExpr,
}
#[derive(Debug, Clone, PartialEq)]
pub struct RecordUpdateSpread {
pub base: Box<UntypedExpr>,
pub location: Span,
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum TraceKind {
Trace,
Todo,
Error,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Tracing {
UserDefined(TraceLevel),
CompilerGenerated(TraceLevel),
All(TraceLevel),
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum TraceLevel {
Silent, // No traces
Compact, // Line numbers only
Verbose, // Full verbose traces as provided by the user or the compiler
}
impl Tracing {
pub fn verbose() -> Self {
Tracing::All(TraceLevel::Verbose)
}
pub fn silent() -> Self {
Tracing::All(TraceLevel::Silent)
}
/// Get the tracing level based on the context we're in.
pub fn trace_level(&self, is_code_gen: bool) -> TraceLevel {
match self {
Tracing::UserDefined(lvl) => {
if is_code_gen {
TraceLevel::Silent
} else {
*lvl
}
}
Tracing::CompilerGenerated(lvl) => {
if is_code_gen {
*lvl
} else {
TraceLevel::Silent
}
}
Tracing::All(lvl) => *lvl,
}
}
}
impl Display for TraceLevel {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::result::Result<(), std::fmt::Error> {
match self {
TraceLevel::Silent => f.write_str("silent"),
TraceLevel::Compact => f.write_str("compact"),
TraceLevel::Verbose => f.write_str("verbose"),
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize)]
pub struct Span {
pub start: usize,
pub end: usize,
}
impl From<Span> for miette::SourceSpan {
fn from(span: Span) -> Self {
Self::new(span.start.into(), span.end - span.start)
}
}
impl Span {
pub fn empty() -> Self {
use chumsky::Span;
Self::new((), 0..0)
}
pub fn create(i: usize, n: usize) -> Self {
use chumsky::Span;
Self::new((), i..i + n)
}
pub fn range(&self) -> Range<usize> {
use chumsky::Span;
self.start()..self.end()
}
pub fn union(self, other: Self) -> Self {
use chumsky::Span;
Self {
start: self.start().min(other.start()),
end: self.end().max(other.end()),
}
}
/// Map the current start and end of the Span to new values.
///
/// # Examples
///
/// ```
/// use aiken_lang::ast::Span;
///
/// let span = Span { start: 0, end: 1 };
///
/// let other = span.map(|start, end| (start + 2, end + 4));
///
/// assert_eq!(other.start, 2);
/// assert_eq!(other.end, 5);
/// ```
pub fn map<F: FnOnce(usize, usize) -> (usize, usize)>(&self, f: F) -> Self {
let (start, end) = f(self.start, self.end);
Self { start, end }
}
/// Map the current end of the Span to a new value.
///
/// # Examples
///
/// ```
/// use aiken_lang::ast::Span;
///
/// let span = Span { start: 0, end: 1 };
///
/// let other = span.map_end(|end| end + 1);
///
/// assert_eq!(other.start, 0);
/// assert_eq!(other.end, 2);
/// ```
pub fn map_end<F: FnOnce(usize) -> usize>(&self, f: F) -> Self {
Self {
start: self.start,
end: f(self.end),
}
}
pub fn contains(&self, byte_index: usize) -> bool {
byte_index >= self.start && byte_index < self.end
}
}
impl fmt::Debug for Span {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self.range())
}
}
impl chumsky::Span for Span {
type Context = ();
type Offset = usize;
fn new(_context: Self::Context, range: Range<Self::Offset>) -> Self {
assert!(range.start <= range.end);
Self {
start: range.start,
end: range.end,
}
}
fn context(&self) -> Self::Context {}
fn start(&self) -> Self::Offset {
self.start
}
fn end(&self) -> Self::Offset {
self.end
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum LogicalOpChainKind {
And,
Or,
}
impl Display for LogicalOpChainKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
LogicalOpChainKind::And => write!(f, "and"),
LogicalOpChainKind::Or => write!(f, "or"),
}
}
}
#[derive(Debug, thiserror::Error, Diagnostic)]
pub enum Error {
#[error(
"I realized the module '{}' contains the keyword '{}', which is forbidden.\n",
name.if_supports_color(Stdout, |s| s.purple()),
keyword.if_supports_color(Stdout, |s| s.purple())
)]
#[diagnostic(url("https://aiken-lang.org/language-tour/modules"))]
#[diagnostic(code("illegal::module_name"))]
#[diagnostic(help(r#"You cannot use keywords as part of a module path name. As a quick reminder, here's a list of all the keywords (and thus, of invalid module path names):
as, expect, check, const, else, fn, if, is, let, opaque, pub, test, todo, trace, type, use, when"#))]
KeywordInModuleName { name: String, keyword: String },
#[error("I realized you used '{}' as a module name, which is reserved (and not available).\n",
name.if_supports_color(Stdout, |s| s.purple())
)]
#[diagnostic(code("illegal::module_name"))]
#[diagnostic(help(r#"Some module names are reserved for internal use. This the case of:
- aiken: where the prelude is located;
- aiken/builtin: where I store low-level Plutus builtins.
Note that 'aiken' is also imported by default; but you can refer to it explicitly to disambiguate with a local value that would clash with one from that module."#
))]
ReservedModuleName { name: String },
}