aiken/crates/uplc/src/ast.rs

905 lines
25 KiB
Rust

use crate::{
builtins::DefaultFunction,
debruijn::{self, Converter},
flat::Binder,
machine::{
cost_model::{initialize_cost_model, CostModel, ExBudget},
eval_result::EvalResult,
Machine,
},
optimize::interner::CodeGenInterner,
};
use num_bigint::BigInt;
use num_traits::ToPrimitive;
use pallas_addresses::{Network, ShelleyAddress, ShelleyDelegationPart, ShelleyPaymentPart};
use pallas_primitives::{
alonzo::{self, Constr, PlutusData},
conway::{self, Language},
};
use pallas_traverse::ComputeHash;
use serde::{
self,
de::{self, Deserialize, Deserializer, MapAccess, Visitor},
ser::{Serialize, SerializeStruct, Serializer},
};
use std::{
fmt::{self, Display},
hash::{self, Hash},
rc::Rc,
};
/// This represents a program in Untyped Plutus Core.
/// A program contains a version tuple and a term.
/// It is generic because Term requires a generic type.
#[derive(Debug, Clone, PartialEq)]
pub struct Program<T> {
pub version: (usize, usize, usize),
pub term: Term<T>,
}
impl<T> Program<T>
where
T: Clone,
{
/// We use this to apply the validator to Datum,
/// then redeemer, then ScriptContext. If datum is
/// even necessary (i.e. minting policy).
pub fn apply(&self, program: &Self) -> Self {
let applied_term = Term::Apply {
function: Rc::new(self.term.clone()),
argument: Rc::new(program.term.clone()),
};
Program {
version: self.version,
term: applied_term,
}
}
/// A convenient and faster version that `apply_term` since the program doesn't need to be
/// re-interned (constant Data do not introduce new bindings).
pub fn apply_data(&self, plutus_data: PlutusData) -> Self {
let applied_term = Term::Apply {
function: Rc::new(self.term.clone()),
argument: Rc::new(Term::Constant(Constant::Data(plutus_data).into())),
};
Program {
version: self.version,
term: applied_term,
}
}
}
impl Program<Name> {
/// We use this to apply the validator to Datum,
/// then redeemer, then ScriptContext. If datum is
/// even necessary (i.e. minting policy).
pub fn apply_term(&self, term: &Term<Name>) -> Self {
let applied_term = Term::Apply {
function: Rc::new(self.term.clone()),
argument: Rc::new(term.clone()),
};
let mut program = Program {
version: self.version,
term: applied_term,
};
CodeGenInterner::new().program(&mut program);
program
}
/// A convenient method to convery named programs to debruijn programs.
pub fn to_debruijn(self) -> Result<Program<DeBruijn>, debruijn::Error> {
self.try_into()
}
/// A convenient method to convery named programs to named debruijn programs.
pub fn to_named_debruijn(self) -> Result<Program<NamedDeBruijn>, debruijn::Error> {
self.try_into()
}
}
impl<'a, T> Display for Program<T>
where
T: Binder<'a>,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.to_pretty())
}
}
#[derive(Debug, Clone, PartialEq)]
pub enum SerializableProgram {
PlutusV1Program(Program<DeBruijn>),
PlutusV2Program(Program<DeBruijn>),
PlutusV3Program(Program<DeBruijn>),
}
impl SerializableProgram {
pub fn inner(&self) -> &Program<DeBruijn> {
use SerializableProgram::*;
match self {
PlutusV1Program(program) => program,
PlutusV2Program(program) => program,
PlutusV3Program(program) => program,
}
}
pub fn map<F>(self, f: F) -> Self
where
F: FnOnce(Program<DeBruijn>) -> Program<DeBruijn>,
{
use SerializableProgram::*;
match self {
PlutusV1Program(program) => PlutusV1Program(f(program)),
PlutusV2Program(program) => PlutusV2Program(f(program)),
PlutusV3Program(program) => PlutusV3Program(f(program)),
}
}
pub fn compiled_code_and_hash(&self) -> (String, pallas_crypto::hash::Hash<28>) {
use SerializableProgram::*;
match self {
PlutusV1Program(pgrm) => {
let cbor = pgrm.to_cbor().unwrap();
let compiled_code = hex::encode(&cbor);
let hash = conway::PlutusScript::<1>(cbor.into()).compute_hash();
(compiled_code, hash)
}
PlutusV2Program(pgrm) => {
let cbor = pgrm.to_cbor().unwrap();
let compiled_code = hex::encode(&cbor);
let hash = conway::PlutusScript::<2>(cbor.into()).compute_hash();
(compiled_code, hash)
}
PlutusV3Program(pgrm) => {
let cbor = pgrm.to_cbor().unwrap();
let compiled_code = hex::encode(&cbor);
let hash = conway::PlutusScript::<3>(cbor.into()).compute_hash();
(compiled_code, hash)
}
}
}
}
impl Serialize for SerializableProgram {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
let (compiled_code, hash) = self.compiled_code_and_hash();
let mut s = serializer.serialize_struct("Program<DeBruijn>", 2)?;
s.serialize_field("compiledCode", &compiled_code)?;
s.serialize_field("hash", &hash)?;
s.end()
}
}
impl<'a> Deserialize<'a> for SerializableProgram {
fn deserialize<D: Deserializer<'a>>(deserializer: D) -> Result<Self, D::Error> {
#[derive(serde::Deserialize)]
#[serde(field_identifier, rename_all = "camelCase")]
enum Fields {
CompiledCode,
Hash,
}
struct ProgramVisitor;
impl<'a> Visitor<'a> for ProgramVisitor {
type Value = SerializableProgram;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("validator")
}
fn visit_map<V>(self, mut map: V) -> Result<SerializableProgram, V::Error>
where
V: MapAccess<'a>,
{
let mut compiled_code: Option<String> = None;
let mut hash: Option<String> = None;
while let Some(key) = map.next_key()? {
match key {
Fields::CompiledCode => {
if compiled_code.is_some() {
return Err(de::Error::duplicate_field("compiledCode"));
}
compiled_code = Some(map.next_value()?);
}
Fields::Hash => {
if hash.is_some() {
return Err(de::Error::duplicate_field("hash"));
}
hash = Some(map.next_value()?);
}
}
}
let compiled_code =
compiled_code.ok_or_else(|| de::Error::missing_field("compiledCode"))?;
let hash = hash.ok_or_else(|| de::Error::missing_field("hash"))?;
let mut cbor_buffer = Vec::new();
let mut flat_buffer = Vec::new();
Program::<DeBruijn>::from_hex(&compiled_code, &mut cbor_buffer, &mut flat_buffer)
.map_err(|e| {
de::Error::invalid_value(
de::Unexpected::Other(&format!("{e}")),
&"a base16-encoded CBOR-serialized UPLC program",
)
})
.and_then(|program| {
let cbor = || program.to_cbor().unwrap().into();
if conway::PlutusScript::<3>(cbor()).compute_hash().to_string() == hash {
return Ok(SerializableProgram::PlutusV3Program(program));
}
if conway::PlutusScript::<2>(cbor()).compute_hash().to_string() == hash {
return Ok(SerializableProgram::PlutusV2Program(program));
}
if conway::PlutusScript::<1>(cbor()).compute_hash().to_string() == hash {
return Ok(SerializableProgram::PlutusV1Program(program));
}
Err(de::Error::custom(
"hash doesn't match any recognisable Plutus version.",
))
})
}
}
const FIELDS: &[&str] = &["compiledCode", "hash"];
deserializer.deserialize_struct("Program<DeBruijn>", FIELDS, ProgramVisitor)
}
}
impl Program<DeBruijn> {
pub fn address(
&self,
network: Network,
delegation: ShelleyDelegationPart,
plutus_version: &Language,
) -> ShelleyAddress {
let cbor = self.to_cbor().unwrap();
let validator_hash = match plutus_version {
Language::PlutusV1 => conway::PlutusScript::<1>(cbor.into()).compute_hash(),
Language::PlutusV2 => conway::PlutusScript::<2>(cbor.into()).compute_hash(),
Language::PlutusV3 => conway::PlutusScript::<3>(cbor.into()).compute_hash(),
};
ShelleyAddress::new(
network,
ShelleyPaymentPart::Script(validator_hash),
delegation,
)
}
}
/// This represents a term in Untyped Plutus Core.
/// We need a generic type for the different forms that a program may be in.
/// Specifically, `Var` and `parameter_name` in `Lambda` can be a `Name`,
/// `NamedDebruijn`, or `DeBruijn`. When encoded to flat for on chain usage
/// we must encode using the `DeBruijn` form.
#[derive(Debug, Clone, PartialEq)]
pub enum Term<T> {
// tag: 0
Var(Rc<T>),
// tag: 1
Delay(Rc<Term<T>>),
// tag: 2
Lambda {
parameter_name: Rc<T>,
body: Rc<Term<T>>,
},
// tag: 3
Apply {
function: Rc<Term<T>>,
argument: Rc<Term<T>>,
},
// tag: 4
Constant(Rc<Constant>),
// tag: 5
Force(Rc<Term<T>>),
// tag: 6
Error,
// tag: 7
Builtin(DefaultFunction),
Constr {
tag: usize,
fields: Vec<Term<T>>,
},
Case {
constr: Rc<Term<T>>,
branches: Vec<Term<T>>,
},
}
impl<T> Term<T> {
pub fn is_unit(&self) -> bool {
matches!(self, Term::Constant(c) if c.as_ref() == &Constant::Unit)
}
pub fn is_int(&self) -> bool {
matches!(self, Term::Constant(c) if matches!(c.as_ref(), &Constant::Integer(_)))
}
}
impl<T> TryInto<PlutusData> for Term<T> {
type Error = String;
fn try_into(self) -> Result<PlutusData, String> {
match self {
Term::Constant(rc) => match &*rc {
Constant::Data(data) => Ok(data.to_owned()),
_ => Err("not a data".to_string()),
},
_ => Err("not a data".to_string()),
}
}
}
impl<'a, T> Display for Term<T>
where
T: Binder<'a>,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.to_pretty())
}
}
/// A container for the various constants that are available
/// in Untyped Plutus Core. Used in the `Constant` variant of `Term`.
#[derive(Debug, Clone, PartialEq)]
pub enum Constant {
// tag: 0
Integer(BigInt),
// tag: 1
ByteString(Vec<u8>),
// tag: 2
String(String),
// tag: 3
Unit,
// tag: 4
Bool(bool),
// tag: 5
ProtoList(Type, Vec<Constant>),
// tag: 6
ProtoPair(Type, Type, Rc<Constant>, Rc<Constant>),
// tag: 7
// Apply(Box<Constant>, Type),
// tag: 8
Data(PlutusData),
Bls12_381G1Element(Box<blst::blst_p1>),
Bls12_381G2Element(Box<blst::blst_p2>),
Bls12_381MlResult(Box<blst::blst_fp12>),
}
pub struct Data;
// TODO: See about moving these builders upstream to Pallas?
impl Data {
pub fn to_hex(data: PlutusData) -> String {
let mut bytes = Vec::new();
pallas_codec::minicbor::Encoder::new(&mut bytes)
.encode(data)
.expect("failed to encode Plutus Data as cbor?");
hex::encode(bytes)
}
pub fn integer(i: BigInt) -> PlutusData {
match i.to_i128().map(|n| n.try_into()) {
Some(Ok(i)) => PlutusData::BigInt(alonzo::BigInt::Int(i)),
_ => {
let (sign, bytes) = i.to_bytes_be();
match sign {
num_bigint::Sign::Minus => {
PlutusData::BigInt(alonzo::BigInt::BigNInt(bytes.into()))
}
_ => PlutusData::BigInt(alonzo::BigInt::BigUInt(bytes.into())),
}
}
}
}
pub fn bytestring(bytes: Vec<u8>) -> PlutusData {
PlutusData::BoundedBytes(bytes.into())
}
pub fn map(kvs: Vec<(PlutusData, PlutusData)>) -> PlutusData {
PlutusData::Map(kvs.into())
}
pub fn list(xs: Vec<PlutusData>) -> PlutusData {
PlutusData::Array(if xs.is_empty() {
conway::MaybeIndefArray::Def(xs)
} else {
conway::MaybeIndefArray::Indef(xs)
})
}
pub fn constr(ix: u64, fields: Vec<PlutusData>) -> PlutusData {
let fields = if fields.is_empty() {
conway::MaybeIndefArray::Def(fields)
} else {
conway::MaybeIndefArray::Indef(fields)
};
// NOTE: see https://github.com/input-output-hk/plutus/blob/9538fc9829426b2ecb0628d352e2d7af96ec8204/plutus-core/plutus-core/src/PlutusCore/Data.hs#L139-L155
if ix < 7 {
PlutusData::Constr(Constr {
tag: 121 + ix,
any_constructor: None,
fields,
})
} else if ix < 128 {
PlutusData::Constr(Constr {
tag: 1280 + ix - 7,
any_constructor: None,
fields,
})
} else {
PlutusData::Constr(Constr {
tag: 102,
any_constructor: Some(ix),
fields,
})
}
}
}
#[derive(Debug, Clone, PartialEq)]
pub enum Type {
Bool,
Integer,
String,
ByteString,
Unit,
List(Rc<Type>),
Pair(Rc<Type>, Rc<Type>),
Data,
Bls12_381G1Element,
Bls12_381G2Element,
Bls12_381MlResult,
}
impl Display for Type {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Type::Bool => write!(f, "bool"),
Type::Integer => write!(f, "integer"),
Type::String => write!(f, "string"),
Type::ByteString => write!(f, "bytestring"),
Type::Unit => write!(f, "unit"),
Type::List(t) => write!(f, "list {t}"),
Type::Pair(t1, t2) => write!(f, "pair {t1} {t2}"),
Type::Data => write!(f, "data"),
Type::Bls12_381G1Element => write!(f, "bls12_381_G1_element"),
Type::Bls12_381G2Element => write!(f, "bls12_381_G2_element"),
Type::Bls12_381MlResult => write!(f, "bls12_381_mlresult"),
}
}
}
/// A Name containing it's parsed textual representation
/// and a unique id from string interning. The Name's text is
/// interned during parsing.
#[derive(Debug, Clone, Eq)]
pub struct Name {
pub text: String,
pub unique: Unique,
}
impl Name {
pub fn text(t: impl ToString) -> Name {
Name {
text: t.to_string(),
unique: 0.into(),
}
}
}
impl hash::Hash for Name {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.text.hash(state);
self.unique.hash(state);
}
}
impl PartialEq for Name {
fn eq(&self, other: &Self) -> bool {
self.unique == other.unique
}
}
/// A unique id used for string interning.
#[derive(Debug, Clone, PartialEq, Copy, Eq, Hash)]
pub struct Unique(isize);
impl Unique {
/// Create a new unique id.
pub fn new(unique: isize) -> Self {
Unique(unique)
}
/// Increment the available unique id. This is used during
/// string interning to get the next available unique id.
pub fn increment(&mut self) {
self.0 += 1;
}
}
impl From<isize> for Unique {
fn from(i: isize) -> Self {
Unique(i)
}
}
impl From<Unique> for isize {
fn from(d: Unique) -> Self {
d.0
}
}
impl Display for Unique {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
/// Similar to `Name` but for Debruijn indices.
/// `Name` is replaced by `NamedDebruijn` when converting
/// program to it's debruijn form.
#[derive(Debug, Clone, Eq)]
pub struct NamedDeBruijn {
pub text: String,
pub index: DeBruijn,
}
impl PartialEq for NamedDeBruijn {
fn eq(&self, other: &Self) -> bool {
self.index == other.index
}
}
/// This is useful for decoding a on chain program into debruijn form.
/// It allows for injecting fake textual names while also using Debruijn for decoding
/// without having to loop through twice.
#[derive(Debug, Clone)]
pub struct FakeNamedDeBruijn(pub(crate) NamedDeBruijn);
impl From<DeBruijn> for FakeNamedDeBruijn {
fn from(d: DeBruijn) -> Self {
FakeNamedDeBruijn(d.into())
}
}
impl From<FakeNamedDeBruijn> for DeBruijn {
fn from(d: FakeNamedDeBruijn) -> Self {
d.0.into()
}
}
impl From<FakeNamedDeBruijn> for NamedDeBruijn {
fn from(d: FakeNamedDeBruijn) -> Self {
d.0
}
}
impl From<NamedDeBruijn> for FakeNamedDeBruijn {
fn from(d: NamedDeBruijn) -> Self {
FakeNamedDeBruijn(d)
}
}
/// Represents a debruijn index.
#[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub struct DeBruijn(usize);
impl DeBruijn {
/// Create a new debruijn index.
pub fn new(index: usize) -> Self {
DeBruijn(index)
}
pub fn inner(&self) -> usize {
self.0
}
}
impl From<usize> for DeBruijn {
fn from(i: usize) -> Self {
DeBruijn(i)
}
}
impl From<DeBruijn> for usize {
fn from(d: DeBruijn) -> Self {
d.0
}
}
impl Display for DeBruijn {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl From<NamedDeBruijn> for DeBruijn {
fn from(n: NamedDeBruijn) -> Self {
n.index
}
}
impl From<DeBruijn> for NamedDeBruijn {
fn from(index: DeBruijn) -> Self {
NamedDeBruijn {
// Inject fake name. We got `i` from the Plutus code base.
text: String::from("i"),
index,
}
}
}
/// Convert a Parsed `Program` to a `Program` in `NamedDebruijn` form.
/// This checks for any Free Uniques in the `Program` and returns an error if found.
impl TryFrom<Program<Name>> for Program<NamedDeBruijn> {
type Error = debruijn::Error;
fn try_from(value: Program<Name>) -> Result<Self, Self::Error> {
Ok(Program::<NamedDeBruijn> {
version: value.version,
term: value.term.try_into()?,
})
}
}
/// Convert a Parsed `Term` to a `Term` in `NamedDebruijn` form.
/// This checks for any Free Uniques in the `Term` and returns an error if found.
impl TryFrom<Term<Name>> for Term<NamedDeBruijn> {
type Error = debruijn::Error;
fn try_from(value: Term<Name>) -> Result<Self, debruijn::Error> {
let mut converter = Converter::new();
let term = converter.name_to_named_debruijn(&value)?;
Ok(term)
}
}
/// Convert a Parsed `Program` to a `Program` in `Debruijn` form.
/// This checks for any Free Uniques in the `Program` and returns an error if found.
impl TryFrom<Program<Name>> for Program<DeBruijn> {
type Error = debruijn::Error;
fn try_from(value: Program<Name>) -> Result<Self, Self::Error> {
Ok(Program::<DeBruijn> {
version: value.version,
term: value.term.try_into()?,
})
}
}
/// Convert a Parsed `Term` to a `Term` in `Debruijn` form.
/// This checks for any Free Uniques in the `Program` and returns an error if found.
impl TryFrom<Term<Name>> for Term<DeBruijn> {
type Error = debruijn::Error;
fn try_from(value: Term<Name>) -> Result<Self, debruijn::Error> {
let mut converter = Converter::new();
let term = converter.name_to_debruijn(&value)?;
Ok(term)
}
}
impl TryFrom<&Program<DeBruijn>> for Program<Name> {
type Error = debruijn::Error;
fn try_from(value: &Program<DeBruijn>) -> Result<Self, Self::Error> {
Ok(Program::<Name> {
version: value.version,
term: (&value.term).try_into()?,
})
}
}
impl TryFrom<&Term<DeBruijn>> for Term<Name> {
type Error = debruijn::Error;
fn try_from(value: &Term<DeBruijn>) -> Result<Self, debruijn::Error> {
let mut converter = Converter::new();
let term = converter.debruijn_to_name(value)?;
Ok(term)
}
}
impl TryFrom<Program<NamedDeBruijn>> for Program<Name> {
type Error = debruijn::Error;
fn try_from(value: Program<NamedDeBruijn>) -> Result<Self, Self::Error> {
Ok(Program::<Name> {
version: value.version,
term: value.term.try_into()?,
})
}
}
impl TryFrom<Term<NamedDeBruijn>> for Term<Name> {
type Error = debruijn::Error;
fn try_from(value: Term<NamedDeBruijn>) -> Result<Self, debruijn::Error> {
let mut converter = Converter::new();
let term = converter.named_debruijn_to_name(&value)?;
Ok(term)
}
}
impl From<Program<NamedDeBruijn>> for Program<DeBruijn> {
fn from(value: Program<NamedDeBruijn>) -> Self {
Program::<DeBruijn> {
version: value.version,
term: value.term.into(),
}
}
}
impl From<Term<NamedDeBruijn>> for Term<DeBruijn> {
fn from(value: Term<NamedDeBruijn>) -> Self {
let mut converter = Converter::new();
converter.named_debruijn_to_debruijn(&value)
}
}
impl From<Program<NamedDeBruijn>> for Program<FakeNamedDeBruijn> {
fn from(value: Program<NamedDeBruijn>) -> Self {
Program::<FakeNamedDeBruijn> {
version: value.version,
term: value.term.into(),
}
}
}
impl From<Term<NamedDeBruijn>> for Term<FakeNamedDeBruijn> {
fn from(value: Term<NamedDeBruijn>) -> Self {
let mut converter = Converter::new();
converter.named_debruijn_to_fake_named_debruijn(&value)
}
}
impl TryFrom<Program<DeBruijn>> for Program<Name> {
type Error = debruijn::Error;
fn try_from(value: Program<DeBruijn>) -> Result<Self, Self::Error> {
Ok(Program::<Name> {
version: value.version,
term: value.term.try_into()?,
})
}
}
impl TryFrom<Term<DeBruijn>> for Term<Name> {
type Error = debruijn::Error;
fn try_from(value: Term<DeBruijn>) -> Result<Self, debruijn::Error> {
let mut converter = Converter::new();
let term = converter.debruijn_to_name(&value)?;
Ok(term)
}
}
impl From<Program<DeBruijn>> for Program<NamedDeBruijn> {
fn from(value: Program<DeBruijn>) -> Self {
Program::<NamedDeBruijn> {
version: value.version,
term: value.term.into(),
}
}
}
impl From<Term<DeBruijn>> for Term<NamedDeBruijn> {
fn from(value: Term<DeBruijn>) -> Self {
let mut converter = Converter::new();
converter.debruijn_to_named_debruijn(&value)
}
}
impl From<Program<FakeNamedDeBruijn>> for Program<NamedDeBruijn> {
fn from(value: Program<FakeNamedDeBruijn>) -> Self {
Program::<NamedDeBruijn> {
version: value.version,
term: value.term.into(),
}
}
}
impl From<Term<FakeNamedDeBruijn>> for Term<NamedDeBruijn> {
fn from(value: Term<FakeNamedDeBruijn>) -> Self {
let mut converter = Converter::new();
converter.fake_named_debruijn_to_named_debruijn(&value)
}
}
impl Program<NamedDeBruijn> {
pub fn eval(self, initial_budget: ExBudget) -> EvalResult {
let mut machine = Machine::new(
Language::PlutusV2,
CostModel::default(),
initial_budget,
200,
);
let term = machine.run(self.term);
EvalResult::new(term, machine.ex_budget, initial_budget, machine.logs)
}
/// Evaluate a Program as a specific PlutusVersion
pub fn eval_version(self, initial_budget: ExBudget, version: &Language) -> EvalResult {
let mut machine = Machine::new(version.clone(), CostModel::default(), initial_budget, 200);
let term = machine.run(self.term);
EvalResult::new(term, machine.ex_budget, initial_budget, machine.logs)
}
pub fn eval_as(
self,
version: &Language,
costs: &[i64],
initial_budget: Option<&ExBudget>,
) -> EvalResult {
let budget = initial_budget.copied().unwrap_or_default();
let mut machine = Machine::new(
version.clone(),
initialize_cost_model(version, costs),
budget,
200, //slippage
);
let term = machine.run(self.term);
EvalResult::new(term, machine.ex_budget, budget, machine.logs)
}
}
impl Program<DeBruijn> {
pub fn eval(&self, initial_budget: ExBudget) -> EvalResult {
let program: Program<NamedDeBruijn> = self.clone().into();
program.eval(initial_budget)
}
pub fn eval_version(self, initial_budget: ExBudget, version: &Language) -> EvalResult {
let program: Program<NamedDeBruijn> = self.clone().into();
program.eval_version(initial_budget, version)
}
}
impl Term<NamedDeBruijn> {
pub fn is_valid_script_result(&self) -> bool {
!matches!(self, Term::Error)
}
}