aiken/crates/aiken-lang/src/gen_uplc.rs

5206 lines
199 KiB
Rust

use std::{rc::Rc, sync::Arc};
use indexmap::{IndexMap, IndexSet};
use itertools::Itertools;
use uplc::{
ast::{Constant as UplcConstant, Name, NamedDeBruijn, Program, Term, Type as UplcType},
builder::{CONSTR_FIELDS_EXPOSER, CONSTR_GET_FIELD, CONSTR_INDEX_EXPOSER, EXPECT_ON_LIST},
builtins::DefaultFunction,
machine::cost_model::ExBudget,
optimize::aiken_optimize_and_intern,
parser::interner::Interner,
};
use crate::{
ast::{
ArgName, AssignmentKind, BinOp, Pattern, Span, TypedArg, TypedClause, TypedDataType,
TypedFunction, TypedValidator, UnOp,
},
builtins::{bool, data, void},
expr::TypedExpr,
gen_uplc::builder::{
find_and_replace_generics, get_arg_type_name, get_generic_id_and_type, get_variant_name,
lookup_data_type_by_tipo,
},
tipo::{
ModuleValueConstructor, PatternConstructor, Type, TypeInfo, ValueConstructor,
ValueConstructorVariant,
},
IdGenerator,
};
pub mod air;
pub mod builder;
pub mod scope;
pub mod stack;
use air::Air;
use builder::{
AssignmentProperties, ClauseProperties, DataTypeKey, FuncComponents, FunctionAccessKey,
};
use self::{builder::replace_opaque_type, scope::Scope, stack::AirStack};
#[derive(Clone, Debug)]
pub enum CodeGenFunction {
Function(Vec<Air>, Vec<String>),
Link(String),
}
#[derive(Clone)]
pub struct CodeGenerator<'a> {
defined_functions: IndexMap<FunctionAccessKey, ()>,
functions: IndexMap<FunctionAccessKey, &'a TypedFunction>,
data_types: IndexMap<DataTypeKey, &'a TypedDataType>,
module_types: IndexMap<&'a String, &'a TypeInfo>,
id_gen: Rc<IdGenerator>,
needs_field_access: bool,
code_gen_functions: IndexMap<String, CodeGenFunction>,
zero_arg_functions: IndexMap<FunctionAccessKey, Vec<Air>>,
tracing: bool,
}
impl<'a> CodeGenerator<'a> {
pub fn new(
functions: IndexMap<FunctionAccessKey, &'a TypedFunction>,
data_types: IndexMap<DataTypeKey, &'a TypedDataType>,
module_types: IndexMap<&'a String, &'a TypeInfo>,
tracing: bool,
) -> Self {
CodeGenerator {
defined_functions: IndexMap::new(),
functions,
data_types,
module_types,
needs_field_access: false,
id_gen: IdGenerator::new().into(),
code_gen_functions: IndexMap::new(),
zero_arg_functions: IndexMap::new(),
tracing,
}
}
pub fn reset(&mut self) {
self.code_gen_functions = IndexMap::new();
self.zero_arg_functions = IndexMap::new();
self.id_gen = IdGenerator::new().into();
self.needs_field_access = false;
self.defined_functions = IndexMap::new();
}
pub fn generate(
&mut self,
TypedValidator {
fun,
other_fun,
params,
..
}: &TypedValidator,
) -> Program<Name> {
let mut ir_stack = AirStack::new(self.id_gen.clone());
ir_stack.noop();
let mut args_stack = ir_stack.empty_with_scope();
let mut body_stack = ir_stack.empty_with_scope();
let mut unit_stack = ir_stack.empty_with_scope();
let mut error_stack = ir_stack.empty_with_scope();
self.wrap_validator_args(&mut args_stack, &fun.arguments, true);
self.build(&fun.body, &mut body_stack);
unit_stack.void();
error_stack.error(void());
ir_stack.merge_child(args_stack);
ir_stack.if_branch(bool(), body_stack, unit_stack);
ir_stack.merge_child(error_stack);
let mut ir_stack = ir_stack.complete();
self.define_ir(&mut ir_stack);
self.convert_opaque_type_to_inner_ir(&mut ir_stack);
let mut term = self.uplc_code_gen(&mut ir_stack);
if let Some(other) = other_fun {
self.reset();
let mut other_ir_stack = AirStack::new(self.id_gen.clone());
other_ir_stack.noop();
let mut args_stack = other_ir_stack.empty_with_scope();
let mut body_stack = other_ir_stack.empty_with_scope();
let mut unit_stack = other_ir_stack.empty_with_scope();
let mut error_stack = other_ir_stack.empty_with_scope();
self.wrap_validator_args(&mut args_stack, &other.arguments, true);
self.build(&other.body, &mut body_stack);
unit_stack.void();
error_stack.error(void());
other_ir_stack.merge_child(args_stack);
other_ir_stack.if_branch(bool(), body_stack, unit_stack);
other_ir_stack.merge_child(error_stack);
let mut other_ir_stack = other_ir_stack.complete();
self.define_ir(&mut other_ir_stack);
self.convert_opaque_type_to_inner_ir(&mut other_ir_stack);
let other_term = self.uplc_code_gen(&mut other_ir_stack);
let (spend, mint) = if other.arguments.len() > fun.arguments.len() {
(other_term, term)
} else {
(term, other_term)
};
term = builder::wrap_as_multi_validator(spend, mint);
self.needs_field_access = true;
}
term = builder::wrap_validator_args(term, params);
self.finalize(term)
}
pub fn generate_test(&mut self, test_body: &TypedExpr) -> Program<Name> {
let mut ir_stack = AirStack::new(self.id_gen.clone());
ir_stack.noop();
self.build(test_body, &mut ir_stack);
let mut ir_stack = ir_stack.complete();
self.define_ir(&mut ir_stack);
self.convert_opaque_type_to_inner_ir(&mut ir_stack);
let term = self.uplc_code_gen(&mut ir_stack);
self.finalize(term)
}
fn finalize(&mut self, term: Term<Name>) -> Program<Name> {
let mut term = term;
if self.needs_field_access {
term = term
.constr_get_field()
.constr_fields_exposer()
.constr_index_exposer();
}
let mut program = Program {
version: (1, 0, 0),
term,
};
program = aiken_optimize_and_intern(program);
// This is very important to call here.
// If this isn't done, re-using the same instance
// of the generator will result in free unique errors
// among other unpredictable things. In fact,
// switching to a shared code generator caused some
// instability issues and we fixed it by placing this
// method here.
self.reset();
program
}
pub(crate) fn build(&mut self, body: &TypedExpr, ir_stack: &mut AirStack) {
match body {
TypedExpr::Int { value, .. } => ir_stack.integer(value.to_string()),
TypedExpr::String { value, .. } => ir_stack.string(value.to_string()),
TypedExpr::ByteArray { bytes, .. } => ir_stack.byte_array(bytes.to_vec()),
TypedExpr::Pipeline { expressions, .. } | TypedExpr::Sequence { expressions, .. } => {
let mut stacks = Vec::new();
for expr in expressions.iter() {
let mut stack = ir_stack.empty_with_scope();
self.build(expr, &mut stack);
stacks.push(stack);
}
ir_stack.sequence(stacks);
}
TypedExpr::Var {
constructor, name, ..
} => match &constructor.variant {
ValueConstructorVariant::ModuleConstant { literal, .. } => {
builder::constants_ir(literal, ir_stack);
}
ValueConstructorVariant::ModuleFn {
builtin: Some(builtin),
..
} => {
ir_stack.builtin(*builtin, constructor.tipo.clone(), vec![]);
}
_ => {
ir_stack.var(constructor.clone(), name, "");
}
},
TypedExpr::Fn { args, body, .. } => {
let mut body_stack = ir_stack.empty_with_scope();
self.build(body, &mut body_stack);
let params = args
.iter()
.map(|arg| arg.arg_name.get_variable_name().unwrap_or("_").to_string())
.collect();
ir_stack.anonymous_function(params, body_stack);
}
TypedExpr::List {
elements,
tail,
tipo,
..
} => {
let mut stacks = Vec::new();
for element in elements {
let mut stack = ir_stack.empty_with_scope();
self.build(element, &mut stack);
stacks.push(stack);
}
let tail = tail.as_ref().map(|tail| {
let mut tail_stack = ir_stack.empty_with_scope();
self.build(tail, &mut tail_stack);
tail_stack
});
ir_stack.list(tipo.clone(), stacks, tail);
}
TypedExpr::Call {
fun, args, tipo, ..
} => {
match &**fun {
TypedExpr::Var { constructor, .. } => match &constructor.variant {
ValueConstructorVariant::Record {
name: constr_name, ..
} => {
if let Some(data_type) =
builder::lookup_data_type_by_tipo(&self.data_types, tipo)
{
let (constr_index, _) = data_type
.constructors
.iter()
.enumerate()
.find(|(_, dt)| &dt.name == constr_name)
.unwrap();
let Some(fun_arg_types) = fun.tipo().arg_types() else {
unreachable!()
};
let mut stacks = Vec::new();
for (arg, func_type) in args.iter().zip(fun_arg_types) {
let mut stack = ir_stack.empty_with_scope();
if func_type.is_data() && !arg.value.tipo().is_data() {
stack.wrap_data(arg.value.tipo());
}
self.build(&arg.value, &mut stack);
stacks.push(stack);
}
ir_stack.record(constructor.tipo.clone(), constr_index, stacks);
return;
}
}
ValueConstructorVariant::ModuleFn {
builtin: Some(func),
..
} => {
let Some(fun_arg_types) = fun.tipo().arg_types() else {unreachable!()};
let mut stacks = Vec::new();
for (arg, func_type) in args.iter().zip(fun_arg_types) {
let mut stack = ir_stack.empty_with_scope();
if func_type.is_data() && !arg.value.tipo().is_data() {
stack.wrap_data(arg.value.tipo());
}
self.build(&arg.value, &mut stack);
stacks.push(stack);
}
ir_stack.builtin(*func, tipo.clone(), stacks);
return;
}
_ => {}
},
TypedExpr::ModuleSelect {
constructor,
module_name,
..
} => match constructor {
ModuleValueConstructor::Record {
name: constr_name,
tipo,
..
} => {
if let Some(data_type) =
builder::lookup_data_type_by_tipo(&self.data_types, tipo)
{
let (constr_index, _) = data_type
.constructors
.iter()
.enumerate()
.find(|(_, dt)| &dt.name == constr_name)
.unwrap();
let Some(fun_arg_types) = fun.tipo().arg_types() else {unreachable!()};
let mut stacks = Vec::new();
for (arg, func_type) in args.iter().zip(fun_arg_types) {
let mut stack = ir_stack.empty_with_scope();
if func_type.is_data() && !arg.value.tipo().is_data() {
stack.wrap_data(arg.value.tipo());
}
self.build(&arg.value, &mut stack);
stacks.push(stack);
}
ir_stack.record(tipo.clone(), constr_index, stacks);
return;
}
}
ModuleValueConstructor::Fn { name, .. } => {
let type_info = self.module_types.get(module_name).unwrap();
let value = type_info.values.get(name).unwrap();
let ValueConstructorVariant::ModuleFn { builtin, .. } = &value.variant else {unreachable!()};
if let Some(func) = builtin {
let Some(fun_arg_types) = fun.tipo().arg_types() else {unreachable!()};
let mut stacks = Vec::new();
for (arg, func_type) in args.iter().zip(fun_arg_types) {
let mut stack = ir_stack.empty_with_scope();
if func_type.is_data() && !arg.value.tipo().is_data() {
stack.wrap_data(arg.value.tipo());
}
self.build(&arg.value, &mut stack);
stacks.push(stack);
}
ir_stack.builtin(*func, tipo.clone(), stacks);
return;
}
}
_ => {}
},
_ => {}
}
let mut fun_stack = ir_stack.empty_with_scope();
self.build(fun, &mut fun_stack);
let fun_arg_types = fun.tipo().arg_types().unwrap_or_default();
let mut stacks = Vec::new();
for (arg, func_type) in args.iter().zip(fun_arg_types) {
let mut stack = ir_stack.empty_with_scope();
if func_type.is_data() && !arg.value.tipo().is_data() {
stack.wrap_data(arg.value.tipo());
}
self.build(&arg.value, &mut stack);
stacks.push(stack);
}
ir_stack.call(tipo.clone(), fun_stack, stacks);
}
TypedExpr::BinOp {
name, left, right, ..
} => {
let mut left_stack = ir_stack.empty_with_scope();
let mut right_stack = ir_stack.empty_with_scope();
self.build(left, &mut left_stack);
self.build(right, &mut right_stack);
ir_stack.binop(*name, left.tipo(), left_stack, right_stack);
}
TypedExpr::Assignment {
value,
pattern,
kind,
tipo,
..
} => {
let mut value_stack = ir_stack.empty_with_scope();
let mut pattern_stack = ir_stack.empty_with_scope();
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
self.build(value, &mut value_stack);
self.assignment(
pattern,
&mut pattern_stack,
value_stack,
&replaced_type,
AssignmentProperties {
value_type: value.tipo(),
kind: *kind,
},
);
ir_stack.merge(pattern_stack);
}
TypedExpr::When {
subject, clauses, ..
} => {
let subject_name = format!("__subject_name_{}", self.id_gen.next());
let constr_var = format!("__constr_name_{}", self.id_gen.next());
let subject_tipo = subject.tipo();
if clauses.len() <= 1 {
let mut value_stack = ir_stack.empty_with_scope();
let mut pattern_stack = ir_stack.empty_with_scope();
let mut subject_stack = ir_stack.empty_with_scope();
self.build(&clauses[0].then, &mut value_stack);
self.build(subject, &mut subject_stack);
self.assignment(
&clauses[0].pattern,
&mut pattern_stack,
subject_stack,
&subject_tipo,
AssignmentProperties {
value_type: clauses[0].then.tipo(),
kind: AssignmentKind::Let,
},
);
pattern_stack.merge_child(value_stack);
ir_stack.merge(pattern_stack);
} else {
// TODO: go over rearrange clauses
let clauses = if subject_tipo.is_list() {
builder::rearrange_clauses(clauses.clone())
} else {
clauses.clone()
};
if let Some((last_clause, clauses)) = clauses.split_last() {
let mut pattern_stack = ir_stack.empty_with_scope();
let mut clause_properties = ClauseProperties::init(
&subject_tipo,
constr_var.clone(),
subject_name.clone(),
);
self.handle_each_clause(
&mut pattern_stack,
&mut clause_properties,
clauses,
&subject_tipo,
);
let last_pattern = &last_clause.pattern;
let mut final_pattern_stack = ir_stack.empty_with_scope();
let mut final_clause_stack = ir_stack.empty_with_scope();
let mut finally_stack = ir_stack.empty_with_scope();
self.build(&last_clause.then, &mut final_clause_stack);
*clause_properties.is_final_clause() = true;
self.when_pattern(
last_pattern,
&mut final_pattern_stack,
final_clause_stack,
&subject_tipo,
&mut clause_properties,
);
if !matches!(last_pattern, Pattern::Tuple { .. }) {
finally_stack.finally(final_pattern_stack);
} else {
finally_stack.merge(final_pattern_stack);
}
if *clause_properties.needs_constr_var() {
let mut subject_stack = ir_stack.empty_with_scope();
self.build(subject, &mut subject_stack);
let mut let_stack = ir_stack.empty_with_scope();
let_stack.let_assignment(constr_var.clone(), subject_stack);
ir_stack.merge(let_stack);
let mut var_stack = ir_stack.empty_with_scope();
let mut when_stack = ir_stack.empty_with_scope();
var_stack.local_var(subject_tipo.clone(), constr_var);
when_stack.when(
subject_tipo,
subject_name,
var_stack,
pattern_stack,
finally_stack,
);
ir_stack.merge(when_stack);
} else {
let mut subject_stack = ir_stack.empty_with_scope();
let mut when_stack = ir_stack.empty_with_scope();
self.build(subject, &mut subject_stack);
when_stack.when(
subject_tipo,
subject_name,
subject_stack,
pattern_stack,
finally_stack,
);
ir_stack.merge(when_stack);
}
}
}
}
TypedExpr::If {
branches,
final_else,
tipo,
..
} => {
for branch in branches.iter() {
let mut condition_stack = ir_stack.empty_with_scope();
let mut branch_body_stack = ir_stack.empty_with_scope();
self.build(&branch.condition, &mut condition_stack);
self.build(&branch.body, &mut branch_body_stack);
ir_stack.if_branch(tipo.clone(), condition_stack, branch_body_stack);
}
let mut else_stack = ir_stack.empty_with_scope();
self.build(final_else, &mut else_stack);
ir_stack.merge_child(else_stack);
}
TypedExpr::RecordAccess {
record,
index,
tipo,
..
} => {
let mut record_access_stack = ir_stack.empty_with_scope();
self.build(record, &mut record_access_stack);
ir_stack.record_access(tipo.clone(), *index, record_access_stack);
}
TypedExpr::ModuleSelect {
constructor,
module_name,
tipo,
..
} => match constructor {
ModuleValueConstructor::Record {
name,
arity,
tipo,
field_map,
..
} => {
assert!(arity == &0, "Wait how did you get here?");
let data_type = lookup_data_type_by_tipo(&self.data_types, tipo);
let val_constructor = ValueConstructor::public(
tipo.clone(),
ValueConstructorVariant::Record {
name: name.clone(),
arity: *arity,
field_map: field_map.clone(),
location: Span::empty(),
module: module_name.clone(),
constructors_count: data_type.unwrap().constructors.len() as u16,
},
);
ir_stack.var(val_constructor, name, "");
}
ModuleValueConstructor::Fn { name, module, .. } => {
let func = self.functions.get(&FunctionAccessKey {
module_name: module_name.clone(),
function_name: name.clone(),
variant_name: String::new(),
});
let type_info = self.module_types.get(module_name).unwrap();
let value = type_info.values.get(name).unwrap();
if let Some(_func) = func {
ir_stack.var(
ValueConstructor::public(tipo.clone(), value.variant.clone()),
format!("{module}_{name}"),
"",
);
} else {
let ValueConstructorVariant::ModuleFn {
builtin: Some(builtin), ..
} = &value.variant else {
unreachable!()
};
ir_stack.builtin(*builtin, tipo.clone(), vec![]);
}
}
ModuleValueConstructor::Constant { literal, .. } => {
builder::constants_ir(literal, ir_stack);
}
},
TypedExpr::RecordUpdate {
spread, args, tipo, ..
} => {
let mut index_types = vec![];
let mut highest_index = 0;
let mut update_stack = ir_stack.empty_with_scope();
self.build(spread, &mut update_stack);
for arg in args
.iter()
.sorted_by(|arg1, arg2| arg1.index.cmp(&arg2.index))
{
let mut arg_stack = update_stack.empty_with_scope();
self.build(&arg.value, &mut arg_stack);
update_stack.merge(arg_stack);
if arg.index > highest_index {
highest_index = arg.index;
}
index_types.push((arg.index, arg.value.tipo()));
}
ir_stack.record_update(tipo.clone(), highest_index, index_types, update_stack);
}
TypedExpr::UnOp { value, op, .. } => {
let mut value_stack = ir_stack.empty_with_scope();
self.build(value, &mut value_stack);
ir_stack.unop(*op, value_stack);
}
TypedExpr::Tuple { elems, tipo, .. } => {
let mut stacks = vec![];
for elem in elems {
let mut elem_stack = ir_stack.empty_with_scope();
self.build(elem, &mut elem_stack);
stacks.push(elem_stack);
}
ir_stack.tuple(tipo.clone(), stacks);
}
TypedExpr::Trace {
tipo, then, text, ..
} => {
let mut text_stack = ir_stack.empty_with_scope();
let mut then_stack = ir_stack.empty_with_scope();
self.build(text, &mut text_stack);
self.build(then, &mut then_stack);
ir_stack.trace(tipo.clone());
ir_stack.merge_child(text_stack);
ir_stack.merge_child(then_stack);
}
TypedExpr::TupleIndex { index, tuple, .. } => {
let mut tuple_stack = ir_stack.empty_with_scope();
self.build(tuple, &mut tuple_stack);
ir_stack.tuple_index(tuple.tipo(), *index, tuple_stack);
}
TypedExpr::ErrorTerm { tipo, .. } => {
ir_stack.error(tipo.clone());
}
}
}
fn handle_each_clause(
&mut self,
ir_stack: &mut AirStack,
clause_properties: &mut ClauseProperties,
clauses: &[TypedClause],
subject_type: &Arc<Type>,
) {
for (index, clause) in clauses.iter().enumerate() {
// holds when clause pattern Air
let mut clause_pattern_stack = ir_stack.empty_with_scope();
let mut clause_then_stack = ir_stack.empty_with_scope();
// reset complex clause setting per clause back to default
*clause_properties.is_complex_clause() = false;
self.build(&clause.then, &mut clause_then_stack);
if let Some(clause_guard) = &clause.guard {
let mut clause_guard_stack = ir_stack.empty_with_scope();
let mut clause_guard_condition = ir_stack.empty_with_scope();
*clause_properties.is_complex_clause() = true;
let clause_guard_name = format!("__clause_guard_{}", self.id_gen.next());
builder::handle_clause_guard(clause_guard, &mut clause_guard_condition);
clause_guard_stack
.let_assignment(clause_guard_name.clone(), clause_guard_condition);
let mut condition_stack = ir_stack.empty_with_scope();
condition_stack.bool(true);
clause_guard_stack.clause_guard(
clause_guard_name,
bool(),
condition_stack,
clause_then_stack,
);
clause_then_stack = clause_guard_stack;
}
let prev_clause_properties = clause_properties.clone();
// deal with clause pattern and then itself
self.when_pattern(
&clause.pattern,
&mut clause_pattern_stack,
clause_then_stack,
subject_type,
clause_properties,
);
match clause_properties {
ClauseProperties::ConstrClause {
original_subject_name,
..
} => {
let subject_name = original_subject_name.clone();
if clause.pattern.is_var() || clause.pattern.is_discard() {
ir_stack.wrap_clause(clause_pattern_stack);
} else {
let data_type =
builder::lookup_data_type_by_tipo(&self.data_types, subject_type);
if let Some(data_type) = data_type {
if data_type.constructors.len() > 1 {
ir_stack.clause(
subject_type.clone(),
subject_name,
*clause_properties.is_complex_clause(),
clause_pattern_stack,
);
} else {
let mut condition_stack = ir_stack.empty_with_scope();
condition_stack.integer(0.to_string());
condition_stack.merge_child(clause_pattern_stack);
ir_stack.clause(
subject_type.clone(),
subject_name,
*clause_properties.is_complex_clause(),
condition_stack,
);
}
} else {
ir_stack.clause(
subject_type.clone(),
subject_name,
*clause_properties.is_complex_clause(),
clause_pattern_stack,
);
}
}
}
ClauseProperties::ListClause {
original_subject_name,
current_index,
..
} => {
let original_subject_name = original_subject_name.clone();
let prev_index = *current_index;
let elements_count_and_has_tail =
builder::get_list_elements_len_and_tail(&clause.pattern);
if let Some((current_clause_index, has_tail)) = elements_count_and_has_tail {
let subject_name = if current_clause_index == 0 {
original_subject_name.clone()
} else {
format!("__tail_{}", current_clause_index - 1)
};
// If current clause has already exposed all needed list items then no need to expose the
// same items again.
if current_clause_index as i64 - i64::from(has_tail) == prev_index {
ir_stack.wrap_clause(clause_pattern_stack);
} else {
let next_elements_count_and_has_tail = if index == clauses.len() - 1 {
None
} else {
builder::get_list_elements_len_and_tail(
&clauses
.get(index + 1)
.unwrap_or_else(|| {
unreachable!(
"We checked length how are we out of bounds"
)
})
.pattern,
)
};
let next_tail = if let Some((next_elements_len, _)) =
next_elements_count_and_has_tail
{
if next_elements_len == current_clause_index {
None
} else {
Some(format!("__tail_{current_clause_index}"))
}
} else {
None
};
//mutate current index if we use list clause
*current_index = current_clause_index as i64;
ir_stack.list_clause(
subject_type.clone(),
subject_name,
next_tail,
*clause_properties.is_complex_clause(),
clause_pattern_stack,
);
}
} else {
ir_stack.wrap_clause(clause_pattern_stack);
}
}
ClauseProperties::TupleClause {
original_subject_name,
defined_tuple_indices,
..
} => {
let ClauseProperties::TupleClause { defined_tuple_indices: prev_defined_tuple_indices, .. } = prev_clause_properties
else {
unreachable!()
};
let subject_name = original_subject_name.clone();
let indices_to_define = defined_tuple_indices
.difference(&prev_defined_tuple_indices)
.cloned()
.collect();
ir_stack.tuple_clause(
subject_type.clone(),
subject_name,
indices_to_define,
prev_defined_tuple_indices,
*clause_properties.is_complex_clause()
|| (!*clause_properties.is_final_clause()),
clause_pattern_stack,
);
}
}
}
}
fn when_pattern(
&mut self,
pattern: &Pattern<PatternConstructor, Arc<Type>>,
pattern_stack: &mut AirStack,
value_stack: AirStack,
tipo: &Type,
clause_properties: &mut ClauseProperties,
) {
match pattern {
Pattern::Int { value, .. } => {
pattern_stack.integer(value.clone());
pattern_stack.merge_child(value_stack);
}
Pattern::Var { name, .. } => {
pattern_stack.void();
let mut var_stack = pattern_stack.empty_with_scope();
var_stack.local_var(
tipo.clone().into(),
match clause_properties {
ClauseProperties::ConstrClause {
clause_var_name,
needs_constr_var,
..
} => {
*needs_constr_var = true;
clause_var_name
}
ClauseProperties::ListClause {
original_subject_name,
..
} => original_subject_name,
ClauseProperties::TupleClause {
original_subject_name,
..
} => original_subject_name,
},
);
pattern_stack.let_assignment(name, var_stack);
pattern_stack.merge_child(value_stack);
}
Pattern::Assign { name, pattern, .. } => {
let mut new_stack = pattern_stack.empty_with_scope();
new_stack.local_var(
tipo.clone().into(),
match clause_properties {
ClauseProperties::ConstrClause {
clause_var_name,
needs_constr_var,
..
} => {
*needs_constr_var = true;
clause_var_name
}
ClauseProperties::ListClause {
original_subject_name,
..
} => original_subject_name,
ClauseProperties::TupleClause {
original_subject_name,
..
} => original_subject_name,
},
);
let mut let_stack = pattern_stack.empty_with_scope();
let_stack.let_assignment(name.clone(), new_stack);
let_stack.merge_child(value_stack);
self.when_pattern(pattern, pattern_stack, let_stack, tipo, clause_properties);
}
Pattern::Discard { .. } => {
pattern_stack.void();
pattern_stack.merge_child(value_stack);
}
Pattern::List { elements, tail, .. } => {
for element in elements {
builder::check_when_pattern_needs(element, clause_properties);
}
if let Some(tail) = tail {
builder::check_when_pattern_needs(tail, clause_properties);
}
*clause_properties.needs_constr_var() = false;
let mut void_stack = pattern_stack.empty_with_scope();
void_stack.void();
pattern_stack.merge(void_stack);
self.expose_elements(pattern, pattern_stack, value_stack, clause_properties, tipo);
}
Pattern::Constructor {
arguments,
name: constr_name,
..
} => {
let mut temp_clause_properties = clause_properties.clone();
*temp_clause_properties.needs_constr_var() = false;
if tipo.is_bool() {
pattern_stack.bool(constr_name == "True");
} else {
for arg in arguments {
builder::check_when_pattern_needs(&arg.value, &mut temp_clause_properties);
}
// find data type definition
let data_type =
builder::lookup_data_type_by_tipo(&self.data_types, tipo).unwrap();
let (index, _) = data_type
.constructors
.iter()
.enumerate()
.find(|(_, dt)| &dt.name == constr_name)
.unwrap();
let mut new_stack = pattern_stack.empty_with_scope();
new_stack.local_var(
tipo.clone().into(),
temp_clause_properties.clause_var_name(),
);
// if only one constructor, no need to check
if data_type.constructors.len() > 1 || *clause_properties.is_final_clause() {
// push constructor Index
let mut tag_stack = pattern_stack.empty_with_scope();
tag_stack.integer(index.to_string());
pattern_stack.merge_child(tag_stack);
}
if *temp_clause_properties.needs_constr_var() {
self.expose_elements(
pattern,
pattern_stack,
new_stack,
clause_properties,
tipo,
);
} else {
let empty_stack = pattern_stack.empty_with_scope();
self.expose_elements(
pattern,
pattern_stack,
empty_stack,
clause_properties,
tipo,
);
}
}
pattern_stack.merge_child(value_stack);
// unify clause properties
*clause_properties.is_complex_clause() = *clause_properties.is_complex_clause()
|| *temp_clause_properties.is_complex_clause();
*clause_properties.needs_constr_var() = *clause_properties.needs_constr_var()
|| *temp_clause_properties.needs_constr_var();
}
Pattern::Tuple { elems, .. } => {
for elem in elems {
builder::check_when_pattern_needs(elem, clause_properties);
}
*clause_properties.needs_constr_var() = false;
let temp = pattern_stack.empty_with_scope();
self.expose_elements(pattern, pattern_stack, temp, clause_properties, tipo);
pattern_stack.merge_child(value_stack);
}
}
// final clause can not be complex
if *(clause_properties.is_final_clause()) {
*clause_properties.is_complex_clause() = false;
}
}
fn expose_elements(
&mut self,
pattern: &Pattern<PatternConstructor, Arc<Type>>,
pattern_stack: &mut AirStack,
value_stack: AirStack,
clause_properties: &mut ClauseProperties,
tipo: &Type,
) {
match pattern {
Pattern::Int { .. } => unreachable!(),
Pattern::Var { .. } => unreachable!(),
Pattern::Assign { .. } => todo!("Nested assign not yet implemented"),
Pattern::Discard { .. } => {
pattern_stack.void();
pattern_stack.merge_child(value_stack);
}
Pattern::List { elements, tail, .. } => {
let mut names = vec![];
let mut nested_pattern = pattern_stack.empty_with_scope();
let items_type = &tipo.get_inner_types()[0];
for element in elements {
let name = self.nested_pattern_ir_and_label(
element,
&mut nested_pattern,
items_type,
*clause_properties.is_final_clause(),
);
names.push(name.unwrap_or_else(|| "_".to_string()))
}
let mut tail_name = String::new();
if let Some(tail) = tail {
match &**tail {
Pattern::Var { name, .. } => {
tail_name = name.clone();
}
Pattern::Discard { .. } => {
tail_name = "_".to_string();
}
_ => unreachable!("Patterns in tail of list should not allow this"),
}
}
let tail_head_names = names
.iter()
.enumerate()
.filter(|(_, name)| *name != &"_".to_string())
.map(|(index, name)| {
if index == 0 {
(
clause_properties.original_subject_name().clone(),
name.clone(),
)
} else {
(format!("__tail_{}", index - 1), name.clone())
}
})
.collect_vec();
let tail_var = if elements.len() == 1 || elements.is_empty() {
clause_properties.original_subject_name().clone()
} else {
format!("__tail_{}", elements.len() - 2)
};
let tail = if &tail_name == "_" || tail_name.is_empty() {
None
} else {
Some((tail_var, tail_name))
};
if tail.is_some() || !tail_head_names.is_empty() {
pattern_stack.list_expose(
tipo.clone().into(),
tail_head_names,
tail,
nested_pattern,
);
}
pattern_stack.merge_child(value_stack);
}
Pattern::Constructor {
is_record,
name: constr_name,
arguments,
constructor,
tipo,
..
} => {
let data_type = builder::lookup_data_type_by_tipo(&self.data_types, tipo).unwrap();
let constructor_type = data_type
.constructors
.iter()
.find(|dt| &dt.name == constr_name)
.unwrap();
let mut nested_pattern = pattern_stack.empty_with_scope();
if *is_record {
let field_map = match constructor {
PatternConstructor::Record { field_map, .. } => field_map.clone().unwrap(),
};
let mut type_map: IndexMap<String, Arc<Type>> = IndexMap::new();
for (index, arg) in tipo.arg_types().unwrap().iter().enumerate() {
let label = constructor_type.arguments[index].label.clone().unwrap();
let field_type = arg.clone();
type_map.insert(label, field_type);
}
let arguments_index = arguments
.iter()
.enumerate()
.map(|(index, item)| {
let label = item.label.clone().unwrap_or_default();
let field_index = field_map
.fields
.get(&label)
.map(|(index, _)| index)
.unwrap_or(&index);
let var_name = self.nested_pattern_ir_and_label(
&item.value,
&mut nested_pattern,
type_map.get(&label).unwrap_or(
&Type::App {
public: true,
module: "".to_string(),
name: "Discard".to_string(),
args: vec![],
}
.into(),
),
*clause_properties.is_final_clause(),
);
var_name.map_or(
(label.clone(), "_".to_string(), *field_index),
|var_name| (label, var_name, *field_index),
)
})
.sorted_by(|item1, item2| item1.2.cmp(&item2.2))
.collect::<Vec<(String, String, usize)>>();
let indices = arguments_index
.iter()
.map(|(label, var_name, index)| {
let field_type = type_map
.get(label)
.unwrap_or_else(|| type_map.get_index(*index).unwrap().1);
(*index, var_name.clone(), field_type.clone())
})
.collect_vec();
if indices.is_empty() {
pattern_stack.merge_child(value_stack);
} else {
pattern_stack.fields_expose(indices, false, value_stack);
}
} else {
let mut type_map: IndexMap<usize, Arc<Type>> = IndexMap::new();
for (index, arg) in tipo.arg_types().unwrap().iter().enumerate() {
let field_type = arg.clone();
type_map.insert(index, field_type);
}
let arguments_index = arguments
.iter()
.enumerate()
.map(|(index, item)| {
let var_name = self.nested_pattern_ir_and_label(
&item.value,
&mut nested_pattern,
type_map.get(&index).unwrap(),
*clause_properties.is_final_clause(),
);
var_name.map_or(("_".to_string(), index), |var_name| (var_name, index))
})
.collect::<Vec<(String, usize)>>();
let indices = arguments_index
.iter()
.map(|(name, index)| {
let field_type = type_map.get(index).unwrap();
(*index, name.clone(), field_type.clone())
})
.collect_vec();
if indices.is_empty() {
pattern_stack.merge_child(value_stack);
} else {
pattern_stack.fields_expose(indices, false, value_stack);
}
}
pattern_stack.merge_child(nested_pattern);
}
Pattern::Tuple { elems, .. } => {
let mut nested_pattern = pattern_stack.empty_with_scope();
let items_type = &tipo.get_inner_types();
let names = elems
.iter()
.enumerate()
.filter_map(|(index, element)| {
let name = self.nested_pattern_ir_and_label(
element,
&mut nested_pattern,
&items_type[index],
*clause_properties.is_final_clause(),
);
name.map(|name| (name, index))
})
.collect_vec();
let mut defined_indices = match clause_properties.clone() {
ClauseProperties::TupleClause {
defined_tuple_indices,
..
} => defined_tuple_indices,
_ => unreachable!(),
};
let mut previous_defined_names = vec![];
for (name, index) in names.clone() {
if let Some(defined_index) = defined_indices
.iter()
.find(|(defined_index, _)| *defined_index == index)
{
previous_defined_names.push(defined_index.clone());
} else {
defined_indices.insert((index, name));
}
}
for (index, name) in previous_defined_names {
let mut var_stack = pattern_stack.empty_with_scope();
let new_name = names
.iter()
.find(|(_, current_index)| *current_index == index)
.map(|(new_name, _)| new_name)
.unwrap();
let pattern_type = &tipo.get_inner_types()[index];
var_stack.local_var(pattern_type.clone(), name);
pattern_stack.let_assignment(new_name, var_stack);
}
match clause_properties {
ClauseProperties::TupleClause {
defined_tuple_indices,
..
} => {
*defined_tuple_indices = defined_indices;
}
_ => unreachable!(),
}
pattern_stack.merge_child(nested_pattern);
pattern_stack.merge_child(value_stack);
}
}
}
fn nested_pattern_ir_and_label(
&mut self,
pattern: &Pattern<PatternConstructor, Arc<Type>>,
pattern_stack: &mut AirStack,
pattern_type: &Type,
final_clause: bool,
) -> Option<String> {
match pattern {
Pattern::Var { name, .. } => Some(name.clone()),
Pattern::Discard { .. } => None,
pattern @ Pattern::List { elements, tail, .. } => {
let item_name = format!("__list_item_id_{}", self.id_gen.next());
let new_tail_name = "__tail".to_string();
if elements.is_empty() {
assert!(
!final_clause,
"Why do you have a last clause with [] in it?"
);
let mut void_stack = pattern_stack.empty_with_scope();
void_stack.void();
pattern_stack.list_clause_guard(
pattern_type.clone().into(),
item_name.clone(),
None,
false,
void_stack,
);
} else {
for (index, _) in elements.iter().enumerate() {
let prev_tail_name = if index == 0 {
item_name.clone()
} else {
format!("{}_{}", new_tail_name, index - 1)
};
let mut clause_properties = ClauseProperties::ListClause {
clause_var_name: item_name.clone(),
needs_constr_var: false,
is_complex_clause: false,
original_subject_name: item_name.clone(),
current_index: index as i64,
final_clause,
};
let tail_name = format!("{new_tail_name}_{index}");
if elements.len() - 1 == index {
if tail.is_some() {
let mut elements_stack = pattern_stack.empty_with_scope();
self.when_pattern(
pattern,
&mut elements_stack,
pattern_stack.empty_with_scope(),
pattern_type,
&mut clause_properties,
);
if !final_clause {
pattern_stack.list_clause_guard(
pattern_type.clone().into(),
prev_tail_name,
None,
true,
elements_stack,
);
} else {
pattern_stack.finally(elements_stack)
}
} else {
let mut elements_stack = pattern_stack.empty_with_scope();
let mut void_stack = pattern_stack.empty_with_scope();
void_stack.void();
self.when_pattern(
pattern,
&mut elements_stack,
pattern_stack.empty_with_scope(),
pattern_type,
&mut clause_properties,
);
if !final_clause {
void_stack.list_clause_guard(
pattern_type.clone().into(),
&tail_name,
None,
false,
elements_stack,
);
pattern_stack.list_clause_guard(
pattern_type.clone().into(),
prev_tail_name,
Some(tail_name),
true,
void_stack,
);
} else {
pattern_stack.finally(elements_stack);
}
}
} else if !final_clause {
let mut void_stack = pattern_stack.empty_with_scope();
void_stack.void();
pattern_stack.list_clause_guard(
pattern_type.clone().into(),
prev_tail_name,
Some(tail_name),
true,
void_stack,
);
};
}
}
Some(item_name)
}
pattern @ Pattern::Constructor {
tipo,
name: constr_name,
..
} => {
let id = self.id_gen.next();
let constr_var_name = format!("{constr_name}_{id}");
let mut when_stack = pattern_stack.empty_with_scope();
let mut clause_properties = ClauseProperties::ConstrClause {
clause_var_name: constr_var_name.clone(),
needs_constr_var: false,
is_complex_clause: false,
original_subject_name: constr_var_name.clone(),
final_clause,
};
self.when_pattern(
pattern,
&mut when_stack,
pattern_stack.empty_with_scope(),
tipo,
&mut clause_properties,
);
let data_type = builder::lookup_data_type_by_tipo(&self.data_types, tipo);
if final_clause {
pattern_stack.finally(when_stack);
} else if let Some(data_type) = data_type {
if data_type.constructors.len() > 1 {
let empty_stack = pattern_stack.empty_with_scope();
pattern_stack.clause_guard(
constr_var_name.clone(),
tipo.clone(),
when_stack,
empty_stack,
);
} else {
pattern_stack.merge_child(when_stack);
}
} else {
let empty_stack = pattern_stack.empty_with_scope();
pattern_stack.clause_guard(
constr_var_name.clone(),
tipo.clone(),
when_stack,
empty_stack,
)
}
Some(constr_var_name)
}
a @ Pattern::Tuple { .. } => {
let item_name = format!("__tuple_item_id_{}", self.id_gen.next());
let mut clause_properties = ClauseProperties::TupleClause {
clause_var_name: item_name.clone(),
needs_constr_var: false,
is_complex_clause: false,
original_subject_name: item_name.clone(),
defined_tuple_indices: IndexSet::new(),
final_clause,
};
let mut inner_pattern_stack = pattern_stack.empty_with_scope();
self.when_pattern(
a,
&mut inner_pattern_stack,
pattern_stack.empty_with_scope(),
pattern_type,
&mut clause_properties,
);
let defined_indices = match clause_properties.clone() {
ClauseProperties::TupleClause {
defined_tuple_indices,
..
} => defined_tuple_indices,
_ => unreachable!(),
};
pattern_stack.tuple_clause(
pattern_type.clone().into(),
clause_properties.original_subject_name(),
defined_indices,
IndexSet::new(),
false,
inner_pattern_stack,
);
Some(item_name)
}
Pattern::Assign { name, pattern, .. } => {
let inner_name = self.nested_pattern_ir_and_label(
pattern,
pattern_stack,
pattern_type,
final_clause,
);
let mut var_stack = pattern_stack.empty_with_scope();
var_stack.local_var(pattern_type.clone().into(), inner_name.clone().unwrap());
pattern_stack.let_assignment(name, var_stack);
inner_name
}
Pattern::Int { .. } => {
let error_message = "Nested pattern-match on integers isn't implemented yet. Use when clause-guard as an alternative, or break down the pattern.";
todo!("{}", error_message)
}
}
}
fn assignment(
&mut self,
pattern: &Pattern<PatternConstructor, Arc<Type>>,
pattern_stack: &mut AirStack,
value_stack: AirStack,
tipo: &Type,
assignment_properties: AssignmentProperties,
) {
let mut value_stack = if assignment_properties.value_type.is_data()
&& !tipo.is_data()
&& matches!(assignment_properties.kind, AssignmentKind::Expect)
{
let mut wrap_stack = pattern_stack.empty_with_scope();
wrap_stack.un_wrap_data(tipo.clone().into());
wrap_stack.merge_child(value_stack);
wrap_stack
} else if !assignment_properties.value_type.is_data()
&& tipo.is_data()
&& !pattern.is_discard()
{
let mut wrap_stack = pattern_stack.empty_with_scope();
wrap_stack.wrap_data(assignment_properties.value_type.clone());
wrap_stack.merge_child(value_stack);
wrap_stack
} else {
value_stack
};
match pattern {
Pattern::Int { .. } => todo!("Pattern match with integer assignment not supported"),
Pattern::Var { name, .. } => {
let expect_value_stack = value_stack.empty_with_scope();
pattern_stack.let_assignment(name, value_stack);
if matches!(assignment_properties.kind, AssignmentKind::Expect)
&& assignment_properties.value_type.is_data()
&& !tipo.is_data()
{
let mut expect_stack = pattern_stack.empty_with_scope();
self.expect_pattern(
pattern,
&mut expect_stack,
expect_value_stack,
tipo,
assignment_properties,
);
pattern_stack.merge(expect_stack);
}
}
Pattern::Assign { name, pattern, .. } => {
let mut inner_value_stack = pattern_stack.empty_with_scope();
inner_value_stack.var(
ValueConstructor::public(
tipo.clone().into(),
ValueConstructorVariant::LocalVariable {
location: Span::empty(),
},
),
name,
"",
);
pattern_stack.let_assignment(name, value_stack);
self.assignment(
pattern,
pattern_stack,
inner_value_stack,
tipo,
assignment_properties,
);
}
Pattern::Discard { .. } => {
if matches!(assignment_properties.kind, AssignmentKind::Expect)
&& assignment_properties.value_type.is_data()
&& !tipo.is_data()
{
self.expect_pattern(
pattern,
pattern_stack,
value_stack,
tipo,
assignment_properties,
);
} else {
pattern_stack.let_assignment("_", value_stack);
}
}
list @ Pattern::List { .. } => {
if matches!(assignment_properties.kind, AssignmentKind::Expect)
&& assignment_properties.value_type.is_data()
&& !tipo.is_data()
{
self.expect_pattern(
list,
pattern_stack,
value_stack,
tipo,
assignment_properties,
);
} else {
self.pattern_ir(
list,
pattern_stack,
value_stack,
tipo,
assignment_properties,
);
}
}
constr @ Pattern::Constructor { .. } => {
if matches!(assignment_properties.kind, AssignmentKind::Expect)
&& assignment_properties.value_type.is_data()
&& !tipo.is_data()
{
self.expect_pattern(
constr,
pattern_stack,
value_stack,
tipo,
assignment_properties,
);
} else {
self.pattern_ir(
constr,
pattern_stack,
value_stack,
tipo,
assignment_properties,
);
}
}
tuple @ Pattern::Tuple { .. } => {
if matches!(assignment_properties.kind, AssignmentKind::Expect)
&& assignment_properties.value_type.is_data()
&& !tipo.is_data()
{
self.expect_pattern(
tuple,
pattern_stack,
value_stack,
tipo,
assignment_properties,
);
} else {
self.pattern_ir(
tuple,
pattern_stack,
value_stack,
tipo,
assignment_properties,
);
}
}
}
}
fn pattern_ir(
&mut self,
pattern: &Pattern<PatternConstructor, Arc<Type>>,
pattern_stack: &mut AirStack,
value_stack: AirStack,
tipo: &Type,
assignment_properties: AssignmentProperties,
) {
match pattern {
Pattern::Int { .. } => unreachable!("Pattern Integer"),
Pattern::Var { .. } => unreachable!("Pattern Var"),
Pattern::Assign { .. } => unreachable!("Pattern Assign"),
Pattern::Discard { .. } => unreachable!("Pattern Discard"),
Pattern::List { elements, tail, .. } => {
let inner_list_type = &tipo.get_inner_types()[0];
let mut elements_stack = pattern_stack.empty_with_scope();
let mut names = vec![];
for element in elements {
match element {
Pattern::Var { name, .. } => {
names.push(name.clone());
}
pattern @ (Pattern::List { .. }
| Pattern::Constructor { .. }
| Pattern::Tuple { .. }) => {
let mut var_stack = pattern_stack.empty_with_scope();
let item_name = format!("list_item_id_{}", self.id_gen.next());
names.push(item_name.clone());
let mut element_stack = pattern_stack.empty_with_scope();
var_stack.local_var(inner_list_type.clone(), item_name);
self.pattern_ir(
pattern,
&mut element_stack,
var_stack,
&tipo.get_inner_types()[0],
assignment_properties.clone(),
);
elements_stack.merge(element_stack);
}
Pattern::Int { .. } => unreachable!("Inner List: Pattern Integer"),
Pattern::Assign { .. } => todo!("Assign in lists not supported yet"),
Pattern::Discard { .. } => {
names.push("_".to_string());
}
}
}
if let Some(tail) = tail {
match &**tail {
Pattern::Var { name, .. } => names.push(name.clone()),
Pattern::Discard { .. } => {}
_ => unreachable!(),
}
}
if !names.is_empty() {
pattern_stack.list_accessor(
tipo.clone().into(),
names,
tail.is_some(),
!tail.is_some(),
value_stack,
);
} else {
pattern_stack.list_empty(value_stack);
}
pattern_stack.merge_child(elements_stack);
}
Pattern::Constructor {
arguments,
constructor,
tipo: constr_tipo,
name: constructor_name,
..
} => {
let mut stacks = pattern_stack.empty_with_scope();
let field_map = match constructor {
PatternConstructor::Record { field_map, .. } => field_map.clone(),
};
let mut type_map: IndexMap<usize, Arc<Type>> = IndexMap::new();
for (index, arg) in constr_tipo.arg_types().unwrap().iter().enumerate() {
let field_type = arg.clone();
type_map.insert(index, field_type);
}
let arguments_index = arguments
.iter()
.enumerate()
.map(|(index, item)| {
let label = item.label.clone().unwrap_or_default();
let field_index = if let Some(field_map) = &field_map {
*field_map.fields.get(&label).map(|x| &x.0).unwrap_or(&index)
} else {
index
};
let mut nested_pattern = pattern_stack.empty_with_scope();
let name = self.extract_arg_name(
&item.value,
&mut nested_pattern,
type_map.get(&field_index).unwrap(),
&assignment_properties,
);
// Note the stacks mutation here
stacks.merge(nested_pattern);
name.map_or(("_".to_string(), field_index), |name| (name, field_index))
})
.sorted_by(|item1, item2| item1.1.cmp(&item2.1))
.collect::<Vec<(String, usize)>>();
let constr_name = format!("__{}_{}", constructor_name, self.id_gen.next());
let mut expect_stack = pattern_stack.empty_with_scope();
match assignment_properties.kind {
AssignmentKind::Let => {
expect_stack.merge_child(value_stack);
}
AssignmentKind::Expect => {
if tipo.is_bool() {
expect_stack.expect_bool(constructor_name == "True", value_stack);
} else if tipo.is_void() {
expect_stack.choose_unit(value_stack);
} else if tipo.is_data() {
unimplemented!("What are you doing with Data type?")
} else {
let data_type =
builder::lookup_data_type_by_tipo(&self.data_types, tipo).unwrap();
let (index, _) = data_type
.constructors
.iter()
.enumerate()
.find(|(_, constr)| constr.name == *constructor_name)
.unwrap();
let constr_name = format!("__{}_{}", constr_name, self.id_gen.next());
let mut var_stack = expect_stack.empty_with_scope();
var_stack.local_var(tipo.clone().into(), constr_name.clone());
expect_stack.let_assignment(constr_name.clone(), value_stack);
expect_stack.expect_constr(index, var_stack);
expect_stack.local_var(tipo.clone().into(), constr_name);
}
}
}
if !arguments_index.is_empty() {
let indices = arguments_index
.iter()
.map(|(var_name, index)| {
let field_type = type_map.get(index).unwrap();
(*index, var_name.clone(), field_type.clone())
})
.collect_vec();
pattern_stack.fields_expose(indices, false, expect_stack);
} else if (tipo.is_bool() || tipo.is_void())
&& assignment_properties.kind.is_expect()
{
pattern_stack.merge_child(expect_stack);
} else {
pattern_stack.let_assignment("_", expect_stack);
}
pattern_stack.merge_child(stacks);
}
Pattern::Tuple { elems, .. } => {
let mut stacks = pattern_stack.empty_with_scope();
let mut type_map: IndexMap<usize, Arc<Type>> = IndexMap::new();
for (index, arg) in tipo.get_inner_types().iter().enumerate() {
let field_type = arg.clone();
type_map.insert(index, field_type);
}
let arguments_index = elems
.iter()
.enumerate()
.filter_map(|(tuple_index, item)| {
let mut nested_stack = pattern_stack.empty_with_scope();
let name = self
.extract_arg_name(
item,
&mut nested_stack,
type_map.get(&tuple_index).unwrap(),
&assignment_properties,
)
.map(|name| (name, tuple_index));
stacks.merge(nested_stack);
name
})
.sorted_by(|item1, item2| item1.1.cmp(&item2.1))
.collect::<Vec<(String, usize)>>();
if !arguments_index.is_empty() {
let mut current_index = 0;
let mut final_args = vec![];
for index in 0..elems.len() {
if arguments_index.get(current_index).is_some()
&& arguments_index[current_index].1 == index
{
final_args.push(arguments_index.get(current_index).unwrap().clone());
current_index += 1;
} else {
final_args.push(("_".to_string(), index));
}
}
pattern_stack.tuple_accessor(
tipo.clone().into(),
final_args.into_iter().map(|(item, _)| item).collect_vec(),
false,
value_stack,
);
} else {
pattern_stack.let_assignment("_", value_stack);
}
pattern_stack.merge_child(stacks);
}
}
}
pub fn expect_pattern(
&mut self,
pattern: &Pattern<PatternConstructor, Arc<Type>>,
expect_stack: &mut AirStack,
value_stack: AirStack,
tipo: &Type,
assignment_properties: AssignmentProperties,
) {
match pattern {
Pattern::Int { .. } => unreachable!("Expect Integer"),
Pattern::Var { name, .. } => {
expect_stack.merge(value_stack);
self.expect_type(tipo, expect_stack, name, &mut IndexMap::new());
}
Pattern::Assign { .. } => todo!("Expect Assign not supported yet"),
Pattern::Discard { .. } => {
let name = "__expect_discard";
expect_stack.let_assignment(name, value_stack);
self.expect_type(tipo, expect_stack, name, &mut IndexMap::new());
}
Pattern::List { elements, tail, .. } => {
let inner_list_type = &tipo.get_inner_types()[0];
let mut names = vec![];
let mut expect_list_stacks = vec![];
for element in elements {
match element {
Pattern::Var { name, .. } => {
names.push(name.clone());
}
Pattern::Assign { .. } => {
todo!("Inner List: Expect Assign not supported yet")
}
element_pattern @ (Pattern::List { .. }
| Pattern::Constructor { .. }
| Pattern::Tuple { .. }) => {
let name = format!("list_item_id_{}", self.id_gen.next());
names.push(name.clone());
let mut element_stack = expect_stack.empty_with_scope();
let mut value_stack = element_stack.empty_with_scope();
value_stack.local_var(inner_list_type.clone(), name);
self.expect_pattern(
element_pattern,
&mut element_stack,
value_stack,
inner_list_type,
assignment_properties.clone(),
);
expect_list_stacks.push(element_stack);
}
Pattern::Int { .. } => unreachable!("Inner List: Expect Integer"),
_ => {}
}
}
let mut tail_stack = expect_stack.empty_with_scope();
let name = if let Some(tail) = tail {
match &**tail {
Pattern::Var { name, .. } => name.clone(),
_ => format!("__tail_{}", self.id_gen.next()),
}
} else {
format!("__tail_{}", self.id_gen.next())
};
if tail.is_some() {
self.expect_type(tipo, &mut tail_stack, &name, &mut IndexMap::new());
expect_list_stacks.push(tail_stack);
names.push(name);
}
expect_stack.list_accessor(
tipo.clone().into(),
names,
tail.is_some(),
!tail.is_some(),
value_stack,
);
expect_stack.merge_children(expect_list_stacks);
}
Pattern::Constructor {
arguments,
constructor,
name: constr_name,
tipo,
..
} => {
if tipo.is_bool() {
let PatternConstructor::Record { name, .. } = constructor;
expect_stack.expect_bool(name == "True", value_stack);
} else if tipo.is_void() {
expect_stack.choose_unit(value_stack);
} else {
let field_map = match constructor {
PatternConstructor::Record { field_map, .. } => field_map,
};
let data_type =
builder::lookup_data_type_by_tipo(&self.data_types, tipo).unwrap();
let (index, data_type_constr) = data_type
.constructors
.iter()
.enumerate()
.find(|(_, constr)| &constr.name == constr_name)
.unwrap();
let mut type_map: IndexMap<usize, Arc<Type>> = IndexMap::new();
let arg_types = tipo.arg_types().unwrap();
for (index, arg) in arg_types.iter().enumerate() {
let field_type = arg.clone();
type_map.insert(index, field_type);
}
let mut stacks = expect_stack.empty_with_scope();
let arguments_index = arguments
.iter()
.enumerate()
.filter_map(|(index, item)| {
let label = item.label.clone().unwrap_or_default();
let field_index = field_map
.as_ref()
.map(|field_map| {
field_map.fields.get(&label).map(|x| &x.0).unwrap_or(&index)
})
.unwrap_or(&index);
let mut inner_stack = expect_stack.empty_with_scope();
let name = self.extract_arg_name(
&item.value,
&mut inner_stack,
type_map.get(field_index).unwrap(),
&assignment_properties,
);
stacks.merge(inner_stack);
name.map(|name| (name, *field_index))
})
.sorted_by(|item1, item2| item1.1.cmp(&item2.1))
.collect::<Vec<(String, usize)>>();
let total_fields = data_type_constr.arguments.len();
let mut final_args = vec![];
let mut current_index = 0;
for index in 0..total_fields {
if arguments_index.get(current_index).is_some()
&& arguments_index[current_index].1 == index
{
final_args.push(arguments_index.get(current_index).unwrap().clone());
current_index += 1;
} else {
let id_next = self.id_gen.next();
final_args.push((format!("__field_{index}_{id_next}"), index));
self.expect_type(
type_map.get(&index).unwrap(),
&mut stacks,
&format!("__field_{index}_{id_next}"),
&mut IndexMap::new(),
)
}
}
let constr_var = format!("__constr_{}", self.id_gen.next());
expect_stack.let_assignment(constr_var.clone(), value_stack);
let mut var_stack = expect_stack.empty_with_scope();
var_stack.local_var(tipo.clone(), constr_var.clone());
expect_stack.expect_constr(index, var_stack);
if !final_args.is_empty() {
let mut fields_stack = expect_stack.empty_with_scope();
fields_stack.local_var(tipo.clone(), constr_var);
let indices = final_args
.iter()
.map(|(var_name, index)| {
let field_type = type_map.get(index).unwrap();
(*index, var_name.clone(), field_type.clone())
})
.collect_vec();
expect_stack.fields_expose(indices, true, fields_stack);
}
expect_stack.merge_child(stacks);
}
}
Pattern::Tuple { elems, .. } => {
let mut type_map: IndexMap<usize, Arc<Type>> = IndexMap::new();
for (index, arg) in tipo.arg_types().unwrap().iter().enumerate() {
let field_type = arg.clone();
type_map.insert(index, field_type);
}
let mut stacks = expect_stack.empty_with_scope();
let arguments_index = elems
.iter()
.enumerate()
.filter_map(|(index, item)| {
let field_index = index;
let mut inner_stack = expect_stack.empty_with_scope();
let name = self.extract_arg_name(
item,
&mut inner_stack,
type_map.get(&field_index).unwrap(),
&assignment_properties,
);
stacks.merge(inner_stack);
name.map(|name| (name, field_index))
})
.sorted_by(|item1, item2| item1.1.cmp(&item2.1))
.collect::<Vec<(String, usize)>>();
let total_fields = type_map.len();
let mut final_args = vec![];
let mut current_index = 0;
for index in 0..total_fields {
if arguments_index.get(current_index).is_some()
&& arguments_index[current_index].1 == index
{
final_args.push(arguments_index.get(current_index).unwrap().clone());
current_index += 1;
} else {
let id_next = self.id_gen.next();
final_args.push((format!("__tuple_{index}_{id_next}"), index));
self.expect_type(
type_map.get(&index).unwrap(),
&mut stacks,
&format!("__tuple_{index}_{id_next}"),
&mut IndexMap::new(),
)
}
}
expect_stack.tuple_accessor(
tipo.clone().into(),
final_args.into_iter().map(|(item, _)| item).collect_vec(),
true,
value_stack,
);
expect_stack.merge_child(stacks);
}
}
}
fn expect_type(
&mut self,
tipo: &Type,
expect_stack: &mut AirStack,
name: &str,
defined_data_types: &mut IndexMap<String, u64>,
) {
let mut tipo = tipo.clone().into();
builder::replace_opaque_type(&mut tipo, &self.data_types);
if tipo.is_bool()
|| tipo.is_bytearray()
|| tipo.is_int()
|| tipo.is_string()
|| tipo.is_void()
|| tipo.get_generic().is_some()
|| tipo.is_data()
{
} else if tipo.is_map() {
let new_id = self.id_gen.next();
let id_pair = (self.id_gen.next(), self.id_gen.next());
let inner_list_type = &tipo.get_inner_types()[0];
let inner_pair_types = inner_list_type.get_inner_types();
let mut unwrap_function_stack = expect_stack.empty_with_scope();
let mut pair_access_stack = unwrap_function_stack.empty_with_scope();
let mut local_var_stack = pair_access_stack.empty_with_scope();
local_var_stack.local_var(inner_list_type.clone(), format!("__pair_{new_id}"));
pair_access_stack.tuple_accessor(
inner_list_type.clone(),
vec![
format!("__pair_fst_{}", id_pair.0),
format!("__pair_snd_{}", id_pair.1),
],
false,
local_var_stack,
);
self.expect_type(
&inner_pair_types[0],
&mut pair_access_stack,
&format!("__pair_fst_{}", id_pair.0),
defined_data_types,
);
self.expect_type(
&inner_pair_types[1],
&mut pair_access_stack,
&format!("__pair_snd_{}", id_pair.1),
defined_data_types,
);
unwrap_function_stack
.anonymous_function(vec![format!("__pair_{new_id}")], pair_access_stack);
let function = self.code_gen_functions.get(EXPECT_ON_LIST);
if function.is_none() {
let mut expect_list_stack = expect_stack.empty_with_scope();
expect_list_stack.expect_on_list();
self.code_gen_functions.insert(
EXPECT_ON_LIST.to_string(),
CodeGenFunction::Function(expect_list_stack.complete(), vec![]),
);
}
if let Some(counter) = defined_data_types.get_mut(EXPECT_ON_LIST) {
*counter += 1
} else {
defined_data_types.insert(EXPECT_ON_LIST.to_string(), 1);
}
expect_stack.expect_list_from_data(tipo.clone(), name, unwrap_function_stack);
expect_stack.void();
} else if tipo.is_list() {
let new_id = self.id_gen.next();
let inner_list_type = &tipo.get_inner_types()[0];
let mut unwrap_function_stack = expect_stack.empty_with_scope();
let mut list_access_stack = unwrap_function_stack.empty_with_scope();
let mut local_var_stack = list_access_stack.empty_with_scope();
local_var_stack.un_wrap_data(inner_list_type.clone());
local_var_stack.local_var(inner_list_type.clone(), format!("__list_item_{new_id}"));
list_access_stack.let_assignment(format!("__list_item_{new_id}"), local_var_stack);
self.expect_type(
inner_list_type,
&mut list_access_stack,
&format!("__list_item_{new_id}"),
defined_data_types,
);
unwrap_function_stack
.anonymous_function(vec![format!("__list_item_{new_id}")], list_access_stack);
let function = self.code_gen_functions.get(EXPECT_ON_LIST);
if function.is_none() {
let mut expect_list_stack = expect_stack.empty_with_scope();
expect_list_stack.expect_on_list();
self.code_gen_functions.insert(
EXPECT_ON_LIST.to_string(),
CodeGenFunction::Function(expect_list_stack.complete(), vec![]),
);
}
if let Some(counter) = defined_data_types.get_mut(EXPECT_ON_LIST) {
*counter += 1
} else {
defined_data_types.insert(EXPECT_ON_LIST.to_string(), 1);
}
expect_stack.expect_list_from_data(tipo.clone(), name, unwrap_function_stack);
expect_stack.void();
} else if tipo.is_tuple() {
let tuple_inner_types = tipo.get_inner_types();
let mut new_id_list = vec![];
for (index, _) in tuple_inner_types.iter().enumerate() {
new_id_list.push((index, self.id_gen.next()));
}
let mut local_var_stack = expect_stack.empty_with_scope();
local_var_stack.local_var(tipo.clone(), name);
let names = new_id_list
.iter()
.map(|(index, id)| format!("__tuple_index_{index}_{id}"))
.collect();
expect_stack.tuple_accessor(tipo.clone(), names, true, local_var_stack);
for (index, name) in new_id_list
.into_iter()
.map(|(index, id)| (index, format!("__tuple_index_{index}_{id}")))
{
self.expect_type(
&tuple_inner_types[index],
expect_stack,
&name,
defined_data_types,
);
}
} else {
let data_type = builder::lookup_data_type_by_tipo(&self.data_types, &tipo).unwrap();
let new_id = self.id_gen.next();
let mut var_stack = expect_stack.empty_with_scope();
let mut func_stack = expect_stack.empty_with_scope();
let mut call_stack = expect_stack.empty_with_scope();
let mut data_type_variant = tipo
.get_inner_types()
.iter()
.map(|arg| get_arg_type_name(arg))
.join("_");
if let Some(types) = tipo.arg_types() {
for mut tipo in types {
replace_opaque_type(&mut tipo, &self.data_types);
get_variant_name(&mut data_type_variant, &tipo);
}
}
let data_type_name = format!("__expect_{}{}", data_type.name, data_type_variant);
let function = self.code_gen_functions.get(&data_type_name);
if function.is_none() && defined_data_types.get(&data_type_name).is_none() {
defined_data_types.insert(data_type_name.clone(), 1);
let mono_types: IndexMap<u64, Arc<Type>> = if !data_type.typed_parameters.is_empty()
{
data_type
.typed_parameters
.iter()
.zip(tipo.arg_types().unwrap())
.flat_map(|item| get_generic_id_and_type(item.0, &item.1))
.collect()
} else {
vec![].into_iter().collect()
};
let current_defined_state = defined_data_types.clone();
let mut diff_defined_types = IndexMap::new();
let mut clause_stack = expect_stack.empty_with_scope();
let mut when_stack = expect_stack.empty_with_scope();
let mut trace_stack = expect_stack.empty_with_scope();
let mut subject_stack = expect_stack.empty_with_scope();
let mut data_type_stack = expect_stack.empty_with_scope();
for (index, constr) in data_type.constructors.iter().enumerate() {
let arg_indices = constr
.arguments
.iter()
.enumerate()
.map(|(index, arg)| {
let arg_name = arg
.label
.clone()
.unwrap_or(format!("__field_{index}_{new_id}"));
let mut arg_tipo = arg.tipo.clone();
find_and_replace_generics(&mut arg_tipo, &mono_types);
(index, arg_name, arg_tipo)
})
.collect_vec();
let mut arg_stack = expect_stack.empty_with_scope();
let mut arg_stack = if !arg_indices.is_empty() {
let mut field_expose_stack = expect_stack.empty_with_scope();
field_expose_stack.integer(index.to_string());
arg_stack.local_var(tipo.clone(), name);
field_expose_stack.fields_expose(arg_indices.clone(), true, arg_stack);
field_expose_stack
} else {
let mut var_stack = expect_stack.empty_with_scope();
var_stack.local_var(tipo.clone(), name);
arg_stack.integer(index.to_string());
arg_stack.fields_empty(var_stack);
arg_stack
};
for (_index, name, tipo) in arg_indices.clone() {
let mut call_stack = arg_stack.empty_with_scope();
self.expect_type(&tipo, &mut call_stack, &name, defined_data_types);
arg_stack.merge_child(call_stack);
}
for (inner_data_type, inner_count) in defined_data_types.iter() {
if let Some(prev_count) = current_defined_state.get(inner_data_type) {
diff_defined_types
.insert(inner_data_type.to_string(), *inner_count - *prev_count);
} else {
diff_defined_types.insert(inner_data_type.to_string(), *inner_count);
}
}
arg_stack.void();
clause_stack.clause(
tipo.clone(),
format!("__subject_{new_id}"),
false,
arg_stack,
);
}
if self.tracing {
trace_stack.trace(tipo.clone());
trace_stack.string("Constr index did not match any type variant");
}
trace_stack.error(tipo.clone());
subject_stack.local_var(tipo.clone(), name);
when_stack.when(
tipo.clone(),
format!("__subject_{new_id}"),
subject_stack,
clause_stack,
trace_stack,
);
let recursive = *diff_defined_types.get(&data_type_name).unwrap() > 0;
data_type_stack.define_func(
&data_type_name,
"",
"",
vec![name.to_string()],
recursive,
when_stack,
);
self.code_gen_functions.insert(
data_type_name.clone(),
CodeGenFunction::Function(
data_type_stack.complete(),
diff_defined_types
.into_iter()
.filter(|(dt, counter)| dt != &data_type_name && *counter > 0)
.map(|(x, _)| x)
.collect_vec(),
),
);
} else if let Some(counter) = defined_data_types.get_mut(&data_type_name) {
*counter += 1;
} else {
defined_data_types.insert(data_type_name.clone(), 1);
}
func_stack.var(
ValueConstructor::public(
tipo.clone(),
ValueConstructorVariant::ModuleFn {
name: data_type_name.to_string(),
field_map: None,
module: "".to_string(),
arity: 1,
location: Span::empty(),
builtin: None,
},
),
data_type_name,
"",
);
var_stack.local_var(tipo.clone(), name);
call_stack.call(tipo.clone(), func_stack, vec![var_stack]);
expect_stack.expect_constr_from_data(tipo, call_stack);
}
}
fn extract_arg_name(
&mut self,
item: &Pattern<PatternConstructor, Arc<Type>>,
nested_pattern_stack: &mut AirStack,
tipo: &Type,
assignment_properties: &AssignmentProperties,
) -> Option<String> {
match item {
Pattern::Var { name, .. } => Some(name.clone()),
Pattern::Discard { .. } => None,
a @ Pattern::List { .. } => {
let id = self.id_gen.next();
let list_name = format!("__list_{id}");
let mut value_stack = nested_pattern_stack.empty_with_scope();
value_stack.local_var(tipo.clone().into(), list_name.clone());
if matches!(assignment_properties.kind, AssignmentKind::Expect)
&& assignment_properties.value_type.is_data()
&& !tipo.is_data()
{
self.expect_pattern(
a,
nested_pattern_stack,
value_stack,
tipo,
assignment_properties.clone(),
);
} else {
self.pattern_ir(
a,
nested_pattern_stack,
value_stack,
tipo,
assignment_properties.clone(),
);
}
Some(list_name)
}
a @ Pattern::Constructor {
tipo,
name: constr_name,
..
} => {
let id = self.id_gen.next();
let constr_name = format!("{constr_name}_{id}");
let mut local_var_stack = nested_pattern_stack.empty_with_scope();
local_var_stack.local_var(tipo.clone(), constr_name.clone());
if matches!(assignment_properties.kind, AssignmentKind::Expect)
&& assignment_properties.value_type.is_data()
&& !tipo.is_data()
{
self.expect_pattern(
a,
nested_pattern_stack,
local_var_stack,
tipo,
assignment_properties.clone(),
);
} else {
self.pattern_ir(
a,
nested_pattern_stack,
local_var_stack,
tipo,
assignment_properties.clone(),
);
}
Some(constr_name)
}
a @ Pattern::Tuple { .. } => {
let id = self.id_gen.next();
let tuple_name = format!("__tuple_name_{id}");
let mut local_var_stack = nested_pattern_stack.empty_with_scope();
local_var_stack.local_var(tipo.clone().into(), tuple_name.clone());
if matches!(assignment_properties.kind, AssignmentKind::Expect)
&& assignment_properties.value_type.is_data()
&& !tipo.is_data()
{
self.expect_pattern(
a,
nested_pattern_stack,
local_var_stack,
tipo,
assignment_properties.clone(),
);
} else {
self.pattern_ir(
a,
nested_pattern_stack,
local_var_stack,
tipo,
assignment_properties.clone(),
);
}
Some(tuple_name)
}
Pattern::Int { .. } => todo!("Extract Arg Name: Int"),
Pattern::Assign { .. } => todo!("Extract Arg Name: Assign"),
}
}
fn define_ir(&mut self, ir_stack: &mut Vec<Air>) {
let mut function_definitions = IndexMap::new();
let mut func_index_map = IndexMap::new();
let recursion_func_map = IndexMap::new();
self.define_ir_recurse(
ir_stack,
&mut function_definitions,
&mut func_index_map,
recursion_func_map,
false,
);
let mut final_func_dep_ir = IndexMap::new();
let mut to_be_defined = IndexMap::new();
let mut dependency_map = IndexMap::new();
let mut dependency_vec = vec![];
let mut func_keys = function_definitions
.clone()
.into_iter()
.filter(|(_, val)| !val.defined_by_zero_arg)
.map(|(key, val)| (key, val.defined_by_zero_arg))
.collect_vec();
// deal with function dependencies by sorting order in which we iter over them.
while let Some(function) = func_keys.pop() {
let funct_comp = function_definitions.get(&function.0).unwrap();
if dependency_map.contains_key(&function.0) {
dependency_map.shift_remove(&function.0);
}
func_keys.extend(
funct_comp
.dependencies
.iter()
.map(|key| {
(
key.clone(),
function_definitions.get(key).unwrap().defined_by_zero_arg,
)
})
.collect_vec(),
);
let func_scope = func_index_map.get(&function.0).unwrap().clone();
for dep in funct_comp.dependencies.iter() {
let Some(dep_scope) = func_index_map.get_mut(dep) else { unreachable!("Missing dependency scope.")};
*dep_scope = dep_scope.common_ancestor(&func_scope);
}
dependency_map.insert(function.0, function.1);
}
dependency_vec.extend(
dependency_map
.iter()
.filter(|(_, defined_in_zero_arg)| !**defined_in_zero_arg)
.map(|(key, _)| key.clone())
.unique()
.collect_vec(),
);
for func in dependency_vec {
if self.defined_functions.contains_key(&func) {
continue;
}
let func_scope = func_index_map.get(&func).unwrap();
let function_component = function_definitions.get(&func).unwrap();
let mut dep_ir = vec![];
if !function_component.args.is_empty() {
// deal with function dependencies
builder::handle_func_dependencies(
&mut dep_ir,
function_component,
&function_definitions,
&mut self.defined_functions,
&func_index_map,
func_scope,
&mut to_be_defined,
self.id_gen.clone(),
);
final_func_dep_ir.insert(func, dep_ir);
} else {
// since zero arg functions are run at compile time we need to pull all deps
// note anon functions are not included in the above. They exist in a function anyway
let mut defined_functions = IndexMap::new();
// deal with function dependencies in zero arg functions
builder::handle_func_dependencies(
&mut dep_ir,
function_component,
&function_definitions,
&mut defined_functions,
&func_index_map,
func_scope,
&mut to_be_defined,
self.id_gen.clone(),
);
let mut final_zero_arg_ir = dep_ir;
final_zero_arg_ir.extend(function_component.ir.clone());
self.convert_opaque_type_to_inner_ir(&mut final_zero_arg_ir);
self.zero_arg_functions.insert(func, final_zero_arg_ir);
// zero arg functions don't contain the dependencies since they are pre-evaluated
// As such we add functions to defined only after dependencies for all other functions are calculated
}
}
while let Some(func) = to_be_defined.pop() {
let mut dep_ir = vec![];
let mut defined_functions = IndexMap::new();
// deal with function dependencies in zero arg functions
let funt_comp = function_definitions.get(&func.0).unwrap();
let func_scope = func_index_map.get(&func.0).unwrap();
builder::handle_func_dependencies(
&mut dep_ir,
funt_comp,
&function_definitions,
&mut defined_functions,
&func_index_map,
func_scope,
&mut to_be_defined,
self.id_gen.clone(),
);
let mut final_zero_arg_ir = dep_ir;
final_zero_arg_ir.extend(funt_comp.ir.clone());
self.convert_opaque_type_to_inner_ir(&mut final_zero_arg_ir);
self.zero_arg_functions.insert(func.0, final_zero_arg_ir);
}
for (index, ir) in ir_stack.clone().into_iter().enumerate().rev() {
{
let temp_func_index_map = func_index_map.clone();
let to_insert = final_func_dep_ir
.iter()
.filter_map(|(func_key, _)| {
temp_func_index_map
.get(func_key)
.map(|scope| (func_key.clone(), scope.clone()))
})
.filter(|func| {
(func.1.common_ancestor(&ir.scope()) == ir.scope()
|| (index == 0 && func.1.is_empty()))
&& !self.defined_functions.contains_key(&func.0)
&& !self.zero_arg_functions.contains_key(&func.0)
&& !(*dependency_map.get(&func.0).unwrap())
})
.collect_vec();
for (function_access_key, scopes) in to_insert.into_iter().rev() {
func_index_map.remove(&function_access_key);
self.defined_functions
.insert(function_access_key.clone(), ());
let mut full_func_ir =
final_func_dep_ir.get(&function_access_key).unwrap().clone();
let func_comp = function_definitions
.get(&function_access_key)
.unwrap()
.clone();
// zero arg functions are not recursive
if !func_comp.args.is_empty() {
let mut recursion_ir = vec![];
builder::handle_recursion_ir(
&function_access_key,
&func_comp,
&mut recursion_ir,
);
let recursion_stack = AirStack {
id_gen: self.id_gen.clone(),
scope: scopes.clone(),
air: recursion_ir,
};
let mut func_stack = AirStack {
id_gen: self.id_gen.clone(),
scope: scopes.clone(),
air: vec![],
};
if func_comp.is_code_gen_func {
func_stack = recursion_stack
} else {
func_stack.define_func(
function_access_key.function_name.clone(),
function_access_key.module_name.clone(),
function_access_key.variant_name.clone(),
func_comp.args.clone(),
func_comp.recursive,
recursion_stack,
);
}
full_func_ir.extend(func_stack.complete());
for ir in full_func_ir.into_iter().rev() {
ir_stack.insert(index, ir);
}
} else {
full_func_ir.extend(func_comp.ir.clone());
self.zero_arg_functions
.insert(function_access_key, full_func_ir);
}
}
}
}
}
fn define_ir_recurse(
&mut self,
ir_stack: &mut [Air],
func_components: &mut IndexMap<FunctionAccessKey, FuncComponents>,
func_index_map: &mut IndexMap<FunctionAccessKey, Scope>,
mut recursion_func_map: IndexMap<FunctionAccessKey, ()>,
in_zero_arg_func: bool,
) {
self.define_ir_processor(ir_stack, func_components, func_index_map, in_zero_arg_func);
let mut recursion_func_map_to_add = recursion_func_map.clone();
for func_index in func_index_map.clone().iter() {
let func = func_index.0;
let function_components = func_components.get_mut(func).unwrap();
let mut function_ir = function_components.ir.clone();
let in_zero_arg = function_components.args.is_empty() || in_zero_arg_func;
let mut skip = false;
for ir in function_ir.clone() {
let Air::Var { constructor, variant_name, .. } = ir
else {
continue;
};
let ValueConstructorVariant::ModuleFn { name: func_name, module, builtin: None, .. } = constructor.variant
else {
continue;
};
let ir_function_key = FunctionAccessKey {
module_name: module.clone(),
function_name: func_name.clone(),
variant_name: variant_name.clone(),
};
if recursion_func_map.contains_key(&ir_function_key) && func == &ir_function_key {
skip = true;
} else if func == &ir_function_key {
recursion_func_map_to_add.insert(ir_function_key, ());
}
}
recursion_func_map = recursion_func_map_to_add.clone();
if !skip {
let mut inner_func_components = IndexMap::new();
let mut inner_func_index_map = IndexMap::new();
self.define_ir_recurse(
&mut function_ir,
&mut inner_func_components,
&mut inner_func_index_map,
recursion_func_map.clone(),
in_zero_arg,
);
function_components.ir = function_ir;
//now unify
for item in inner_func_components {
if let Some(entry) = func_components.get_mut(&item.0) {
entry.defined_by_zero_arg =
entry.defined_by_zero_arg && item.1.defined_by_zero_arg
} else {
func_components.insert(item.0, item.1);
}
}
for item in inner_func_index_map {
if let Some(entry) = func_index_map.get_mut(&item.0) {
*entry = entry.common_ancestor(&item.1);
} else {
func_index_map.insert(item.0, item.1);
}
}
}
}
}
fn define_ir_processor(
&mut self,
ir_stack: &mut [Air],
func_components: &mut IndexMap<FunctionAccessKey, FuncComponents>,
func_index_map: &mut IndexMap<FunctionAccessKey, Scope>,
in_zero_arg_func: bool,
) {
let mut to_be_defined_map: IndexMap<FunctionAccessKey, Scope> = IndexMap::new();
for (index, ir) in ir_stack.to_vec().iter().enumerate().rev() {
// I tried putting the 2 let else together, but then formatting stopped working
#[rustfmt::skip]
let Air::Var {
scope, constructor, ..
} = ir else {
let scope = ir.scope();
process_scope_updates(&mut to_be_defined_map, &scope, func_index_map);
continue;
};
#[rustfmt::skip]
let ValueConstructorVariant::ModuleFn {name, module, builtin: None, ..} = &constructor.variant else {
let scope = ir.scope();
process_scope_updates(&mut to_be_defined_map, &scope, func_index_map);
continue;
};
let non_variant_function_key = FunctionAccessKey {
module_name: module.clone(),
function_name: name.clone(),
variant_name: String::new(),
};
if let Some(function) = self.functions.get(&non_variant_function_key).cloned() {
let mut func_stack = AirStack::with_scope(self.id_gen.clone(), scope.clone());
self.build(&function.body, &mut func_stack);
let func_ir = func_stack.complete();
let param_types = constructor.tipo.arg_types().unwrap();
let mut mono_types: IndexMap<u64, Arc<Type>> = IndexMap::new();
let mut map = mono_types.into_iter().collect_vec();
for (index, arg) in function.arguments.iter().enumerate() {
if arg.tipo.is_generic() {
let param_type = &param_types[index];
map.append(&mut builder::get_generic_id_and_type(&arg.tipo, param_type));
}
}
if function.return_type.is_generic() {
if let Type::Fn { ret, .. } = &*constructor.tipo {
map.append(&mut builder::get_generic_id_and_type(
&function.return_type,
ret,
))
}
}
mono_types = map.into_iter().collect();
let (variant_name, func_ir) =
builder::monomorphize(func_ir, mono_types, &constructor.tipo, &self.data_types);
let function_key = FunctionAccessKey {
module_name: module.clone(),
function_name: non_variant_function_key.function_name,
variant_name: variant_name.clone(),
};
ir_stack[index] = Air::Var {
scope: scope.clone(),
constructor: constructor.clone(),
name: name.clone(),
variant_name: variant_name.clone(),
};
if let Some(scope_prev) = to_be_defined_map.get(&function_key) {
let new_scope = scope.common_ancestor(scope_prev);
to_be_defined_map.insert(function_key, new_scope);
} else if func_components.get(&function_key).is_some() {
to_be_defined_map.insert(function_key.clone(), scope.clone());
} else {
to_be_defined_map.insert(function_key.clone(), scope.clone());
let mut func_calls = IndexMap::new();
for ir in func_ir.clone().into_iter() {
let Air::Var { constructor, ..} = ir else {
continue;
};
let ValueConstructorVariant::ModuleFn {
name : func_name, module, builtin: None, ..
} = &constructor.variant
else {
continue;
};
let current_func = FunctionAccessKey {
module_name: module.clone(),
function_name: func_name.clone(),
variant_name: String::new(),
};
let current_func_as_variant = FunctionAccessKey {
module_name: module.clone(),
function_name: func_name.clone(),
variant_name: variant_name.clone(),
};
let function = self.functions.get(&current_func);
if function_key.clone() == current_func_as_variant {
func_calls.insert(current_func_as_variant, ());
} else if let (Some(function), Type::Fn { .. }) =
(function, &*constructor.tipo)
{
let param_types = constructor.tipo.arg_types().unwrap();
let mut map = vec![];
for (index, arg) in function.arguments.iter().enumerate() {
if arg.tipo.is_generic() {
let param_type = &param_types[index];
map.append(&mut builder::get_generic_id_and_type(
&arg.tipo, param_type,
));
}
}
if function.return_type.is_generic() {
if let Type::Fn { ret, .. } = &*constructor.tipo {
map.append(&mut builder::get_generic_id_and_type(
&function.return_type,
ret,
))
}
}
let mono_types: IndexMap<u64, Arc<Type>> = map.into_iter().collect();
let mut func_stack =
AirStack::with_scope(self.id_gen.clone(), scope.clone());
self.build(&function.body, &mut func_stack);
let temp_ir = func_stack.complete();
let (variant_name, _) = builder::monomorphize(
temp_ir,
mono_types,
&constructor.tipo,
&self.data_types,
);
func_calls.insert(
FunctionAccessKey {
module_name: current_func.module_name,
function_name: current_func.function_name,
variant_name,
},
(),
);
} else {
func_calls.insert(current_func, ());
}
}
let mut args = vec![];
for arg in function.arguments.iter() {
match &arg.arg_name {
ArgName::Named { name, .. } => {
args.push(name.clone());
}
_ => {
args.push("_".to_string());
}
}
}
let recursive = if func_calls.get(&function_key).is_some() {
func_calls.remove(&function_key);
true
} else {
false
};
func_components.insert(
function_key,
FuncComponents {
ir: func_ir,
dependencies: func_calls.keys().cloned().collect_vec(),
recursive,
args,
defined_by_zero_arg: in_zero_arg_func,
is_code_gen_func: false,
},
);
}
} else if let Some(code_gen_func) = self.code_gen_functions.get(name).cloned() {
// Get actual code gen func if link
let (func_ir, dependencies) = match code_gen_func {
CodeGenFunction::Function(func_ir, dependencies) => (func_ir, dependencies),
CodeGenFunction::Link(func) => {
if let Some(CodeGenFunction::Function(func_ir, dependencies)) =
self.code_gen_functions.get(&func).cloned()
{
(func_ir, dependencies)
} else {
unreachable!("Link must resolve to a code gen function.");
}
}
};
let function_key = FunctionAccessKey {
module_name: "".to_string(),
function_name: name.to_string(),
variant_name: "".to_string(),
};
let function_stack = AirStack {
id_gen: self.id_gen.clone(),
scope: scope.clone(),
air: func_ir,
};
let mut new_stack = AirStack::with_scope(self.id_gen.clone(), scope.clone());
new_stack.merge_child(function_stack);
func_components.insert(
function_key.clone(),
FuncComponents {
ir: new_stack.complete(),
dependencies: dependencies
.into_iter()
.map(|item| FunctionAccessKey {
module_name: "".to_string(),
function_name: item,
variant_name: "".to_string(),
})
.collect_vec(),
recursive: false,
args: vec!["__one".to_string()],
defined_by_zero_arg: in_zero_arg_func,
is_code_gen_func: true,
},
);
to_be_defined_map.insert(function_key, scope.clone());
} else {
unreachable!("We found a function with no definitions");
}
process_scope_updates(&mut to_be_defined_map, scope, func_index_map);
}
// Still to be defined
for func in to_be_defined_map.clone().iter() {
let index_scope = func_index_map.get(func.0).unwrap();
func_index_map.insert(func.0.clone(), func.1.common_ancestor(index_scope));
}
}
fn convert_opaque_type_to_inner_ir(&mut self, ir_stack: &mut Vec<Air>) {
let mut indices_to_remove = vec![];
for (index, ir) in ir_stack.clone().into_iter().enumerate() {
match ir {
Air::Var {
scope,
constructor,
name,
variant_name,
} => {
let mut replaced_type = constructor.tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::Var {
scope,
constructor: ValueConstructor {
public: constructor.public,
variant: constructor.variant,
tipo: replaced_type,
},
name,
variant_name,
};
}
Air::List {
tipo,
scope,
count,
tail,
} => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::List {
scope,
tipo: replaced_type,
count,
tail,
};
}
Air::ListAccessor {
tipo,
scope,
names,
tail,
check_last_item,
} => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::ListAccessor {
scope,
tipo: replaced_type,
names,
tail,
check_last_item,
};
}
Air::ListExpose {
tipo,
scope,
tail_head_names,
tail,
} => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::ListExpose {
scope,
tipo: replaced_type,
tail_head_names,
tail,
};
}
Air::Builtin {
tipo,
scope,
func,
count,
} => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::Builtin {
scope,
func,
count,
tipo: replaced_type,
};
}
Air::BinOp { tipo, scope, name } => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::BinOp {
scope,
name,
tipo: replaced_type,
};
}
Air::When {
tipo,
scope,
subject_name,
} => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::When {
scope,
tipo: replaced_type,
subject_name,
};
}
Air::Clause {
tipo,
scope,
subject_name,
complex_clause,
} => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::Clause {
scope,
tipo: replaced_type,
subject_name,
complex_clause,
};
}
Air::ListClause {
tipo,
scope,
tail_name,
next_tail_name,
complex_clause,
} => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::ListClause {
scope,
tipo: replaced_type,
tail_name,
next_tail_name,
complex_clause,
};
}
Air::TupleClause {
tipo,
scope,
indices,
predefined_indices,
subject_name,
count,
complex_clause,
} => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::TupleClause {
scope,
tipo: replaced_type,
indices,
predefined_indices,
subject_name,
count,
complex_clause,
};
}
Air::ClauseGuard {
tipo,
scope,
subject_name,
} => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::ClauseGuard {
scope,
subject_name,
tipo: replaced_type,
};
}
Air::ListClauseGuard {
tipo,
scope,
tail_name,
next_tail_name,
inverse,
} => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::ListClauseGuard {
scope,
tipo: replaced_type,
tail_name,
next_tail_name,
inverse,
};
}
Air::Tuple { tipo, scope, count } => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::Tuple {
scope,
tipo: replaced_type,
count,
};
}
Air::TupleIndex {
tipo,
scope,
tuple_index,
} => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::TupleIndex {
scope,
tipo: replaced_type,
tuple_index,
};
}
Air::ErrorTerm { tipo, scope } => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::ErrorTerm {
scope,
tipo: replaced_type,
};
}
Air::Trace { tipo, scope } => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::Trace {
scope,
tipo: replaced_type,
};
}
Air::TupleAccessor {
tipo,
scope,
names,
check_last_item,
} => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::TupleAccessor {
scope,
names,
tipo: replaced_type,
check_last_item,
};
}
Air::RecordUpdate {
highest_index,
indices,
scope,
tipo,
} => {
let mut new_indices = vec![];
for (ind, tipo) in indices {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
new_indices.push((ind, replaced_type));
}
ir_stack[index] = Air::RecordUpdate {
scope,
indices: new_indices,
highest_index,
tipo,
};
}
Air::Record {
tag: constr_index,
tipo,
count,
scope,
} => {
if builder::check_replaceable_opaque_type(&tipo, &self.data_types) {
indices_to_remove.push(index);
} else {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::Record {
scope,
tag: constr_index,
tipo: replaced_type,
count,
};
}
}
Air::RecordAccess {
record_index,
tipo,
scope,
} => {
let record = ir_stack[index + 1].clone();
let record_type = record.tipo();
if let Some(record_type) = record_type {
if builder::check_replaceable_opaque_type(&record_type, &self.data_types) {
indices_to_remove.push(index);
} else {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::RecordAccess {
scope,
record_index,
tipo: replaced_type,
};
}
} else {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::RecordAccess {
scope,
record_index,
tipo: replaced_type,
};
}
}
Air::FieldsExpose {
indices,
scope,
check_last_item,
} => {
let record = ir_stack[index + 1].clone();
let record_type = record.tipo();
if let Some(record_type) = record_type {
if builder::check_replaceable_opaque_type(&record_type, &self.data_types) {
ir_stack[index] = Air::Let {
scope,
name: indices[0].1.clone(),
};
} else {
let mut new_indices = vec![];
for (ind, name, tipo) in indices {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
new_indices.push((ind, name, replaced_type));
}
ir_stack[index] = Air::FieldsExpose {
scope,
indices: new_indices,
check_last_item,
};
}
} else {
let mut new_indices = vec![];
for (ind, name, tipo) in indices {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
new_indices.push((ind, name, replaced_type));
}
ir_stack[index] = Air::FieldsExpose {
scope,
indices: new_indices,
check_last_item,
};
}
}
Air::Call { scope, count, tipo } => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::Call {
scope,
tipo: replaced_type,
count,
};
}
Air::If { scope, tipo } => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::If {
scope,
tipo: replaced_type,
};
}
Air::UnWrapData { scope, tipo } => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::UnWrapData {
scope,
tipo: replaced_type,
};
}
Air::WrapData { scope, tipo } => {
let mut replaced_type = tipo.clone();
builder::replace_opaque_type(&mut replaced_type, &self.data_types);
ir_stack[index] = Air::WrapData {
scope,
tipo: replaced_type,
};
}
_ => {}
}
}
for index in indices_to_remove.into_iter().rev() {
ir_stack.remove(index);
}
}
fn uplc_code_gen(&mut self, ir_stack: &mut Vec<Air>) -> Term<Name> {
let mut arg_stack: Vec<Term<Name>> = vec![];
while let Some(ir_element) = ir_stack.pop() {
self.gen_uplc(ir_element, &mut arg_stack);
}
arg_stack[0].clone()
}
fn gen_uplc(&mut self, ir: Air, arg_stack: &mut Vec<Term<Name>>) {
match ir {
Air::Int { value, .. } => {
arg_stack.push(Term::integer(value.parse().unwrap()));
}
Air::String { value, .. } => {
arg_stack.push(Term::string(value));
}
Air::ByteArray { bytes, .. } => {
arg_stack.push(Term::byte_string(bytes));
}
Air::Bool { value, .. } => {
arg_stack.push(Term::bool(value));
}
Air::Var {
name,
constructor,
variant_name,
..
} => {
match &constructor.variant {
ValueConstructorVariant::LocalVariable { .. } => arg_stack.push(Term::Var(
Name {
text: name,
unique: 0.into(),
}
.into(),
)),
ValueConstructorVariant::ModuleConstant { .. } => {
unreachable!()
}
ValueConstructorVariant::ModuleFn {
name: func_name,
module,
..
} => {
let name = if (*func_name == name
|| name == format!("{module}_{func_name}"))
&& !module.is_empty()
{
format!("{module}_{func_name}{variant_name}")
} else {
format!("{func_name}{variant_name}")
};
arg_stack.push(Term::Var(
Name {
text: name,
unique: 0.into(),
}
.into(),
));
}
ValueConstructorVariant::Record {
name: constr_name, ..
} => {
if constructor.tipo.is_bool() {
arg_stack.push(Term::bool(constr_name == "True"));
} else if constructor.tipo.is_void() {
arg_stack.push(Term::Constant(UplcConstant::Unit.into()));
} else {
let data_type = builder::lookup_data_type_by_tipo(
&self.data_types,
&constructor.tipo,
)
.unwrap();
let (constr_index, constr_type) = data_type
.constructors
.iter()
.enumerate()
.find(|(_, x)| x.name == *constr_name)
.unwrap();
let mut term = Term::empty_list();
if constr_type.arguments.is_empty() {
term = Term::constr_data()
.apply(Term::integer(constr_index.try_into().unwrap()))
.apply(term);
let mut program: Program<Name> = Program {
version: (1, 0, 0),
term,
};
let mut interner = Interner::new();
interner.program(&mut program);
let eval_program: Program<NamedDeBruijn> =
program.try_into().unwrap();
let evaluated_term: Term<NamedDeBruijn> =
eval_program.eval(ExBudget::default()).result().unwrap();
term = evaluated_term.try_into().unwrap();
} else {
for (index, arg) in constr_type.arguments.iter().enumerate().rev() {
term = Term::mk_cons()
.apply(builder::convert_type_to_data(
Term::var(
arg.label
.clone()
.unwrap_or_else(|| format!("arg_{index}")),
),
&arg.tipo,
))
.apply(term);
}
term = Term::constr_data()
.apply(Term::integer(constr_index.into()))
.apply(term);
for (index, arg) in constr_type.arguments.iter().enumerate().rev() {
term = term.lambda(
arg.label.clone().unwrap_or_else(|| format!("arg_{index}")),
)
}
}
arg_stack.push(term);
}
}
};
}
Air::Void { .. } => arg_stack.push(Term::Constant(UplcConstant::Unit.into())),
Air::List {
count, tipo, tail, ..
} => {
let mut args = vec![];
for _ in 0..count {
let arg = arg_stack.pop().unwrap();
args.push(arg);
}
let mut constants = vec![];
for arg in &args {
if let Term::Constant(c) = arg {
constants.push(c.clone())
}
}
let list_type = tipo.get_inner_types()[0].clone();
if constants.len() == args.len() && !tail {
let list = if tipo.is_map() {
let mut convert_keys = vec![];
let mut convert_values = vec![];
for constant in constants {
match constant.as_ref() {
UplcConstant::ProtoPair(_, _, fst, snd) => {
convert_keys.push(fst.clone());
convert_values.push(snd.clone());
}
_ => unreachable!(),
}
}
let convert_keys = builder::convert_constants_to_data(convert_keys);
let convert_values = builder::convert_constants_to_data(convert_values);
Term::Constant(
UplcConstant::ProtoList(
UplcType::Pair(UplcType::Data.into(), UplcType::Data.into()),
convert_keys
.into_iter()
.zip(convert_values.into_iter())
.map(|(key, value)| {
UplcConstant::ProtoPair(
UplcType::Data,
UplcType::Data,
key.into(),
value.into(),
)
})
.collect_vec(),
)
.into(),
)
} else {
Term::Constant(
UplcConstant::ProtoList(
UplcType::Data,
builder::convert_constants_to_data(constants),
)
.into(),
)
};
arg_stack.push(list);
} else {
let mut term = if tail {
arg_stack.pop().unwrap()
} else if tipo.is_map() {
Term::empty_map()
} else {
Term::empty_list()
};
for arg in args.into_iter().rev() {
let list_item = if tipo.is_map() {
arg
} else {
builder::convert_type_to_data(arg, &list_type)
};
term = Term::mk_cons().apply(list_item).apply(term);
}
arg_stack.push(term);
}
}
Air::ListAccessor {
names,
tail,
tipo,
check_last_item,
..
} => {
let value = arg_stack.pop().unwrap();
let mut term = arg_stack.pop().unwrap();
let list_id = self.id_gen.next();
let mut id_list = vec![];
id_list.push(list_id);
for _ in 0..names.len() {
id_list.push(self.id_gen.next());
}
let inner_types = tipo
.get_inner_types()
.into_iter()
.cycle()
.take(names.len())
.collect_vec();
term = builder::list_access_to_uplc(
&names,
&id_list,
tail,
0,
term,
inner_types,
check_last_item,
true,
self.tracing,
)
.apply(value);
arg_stack.push(term);
}
Air::ListExpose {
tail_head_names,
tail,
tipo,
..
} => {
let mut term = arg_stack.pop().unwrap();
if let Some((tail_var, tail_name)) = tail {
term = term
.lambda(tail_name)
.apply(Term::tail_list().apply(Term::var(tail_var)));
}
for (tail_var, head_name) in tail_head_names.into_iter().rev() {
let head_list = if tipo.is_map() {
Term::head_list().apply(Term::var(tail_var))
} else {
builder::convert_data_to_type(
Term::head_list().apply(Term::var(tail_var)),
&tipo.get_inner_types()[0],
)
};
term = term.lambda(head_name).apply(head_list);
}
arg_stack.push(term);
}
Air::Fn { params, .. } => {
let mut term = arg_stack.pop().unwrap();
for param in params.iter().rev() {
term = term.lambda(param);
}
arg_stack.push(term);
}
Air::Call { count, .. } => {
if count >= 1 {
let mut term = arg_stack.pop().unwrap();
for _ in 0..count {
let arg = arg_stack.pop().unwrap();
term = term.apply(arg);
}
arg_stack.push(term);
} else {
let term = arg_stack.pop().unwrap();
let zero_arg_functions = self.zero_arg_functions.clone();
let mut anon_func = true;
if let Term::Var(name) = term.clone() {
let text = &name.text;
for (
FunctionAccessKey {
module_name,
function_name,
variant_name,
},
ir,
) in zero_arg_functions.into_iter()
{
let name_module =
format!("{module_name}_{function_name}{variant_name}");
let name = format!("{function_name}{variant_name}");
if text == &name || text == &name_module {
let mut term = self.uplc_code_gen(&mut ir.clone());
term = term
.constr_get_field()
.constr_fields_exposer()
.constr_index_exposer();
let mut program: Program<Name> = Program {
version: (1, 0, 0),
term,
};
let mut interner = Interner::new();
interner.program(&mut program);
let eval_program: Program<NamedDeBruijn> =
program.try_into().unwrap();
let evaluated_term: Term<NamedDeBruijn> =
eval_program.eval(ExBudget::default()).result().unwrap();
arg_stack.push(evaluated_term.try_into().unwrap());
anon_func = false;
}
}
}
if anon_func {
arg_stack.push(term);
}
}
}
Air::Builtin {
func, tipo, count, ..
} => {
let mut arg_vec = vec![];
for _ in 0..count {
arg_vec.push(arg_stack.pop().unwrap());
}
let tipo = match tipo.as_ref() {
Type::Fn { ret, .. } => ret,
_ => &tipo,
};
let term = match &func {
DefaultFunction::IfThenElse
| DefaultFunction::ChooseUnit
| DefaultFunction::Trace
| DefaultFunction::ChooseList
| DefaultFunction::ChooseData
| DefaultFunction::UnConstrData => {
builder::special_case_builtin(&func, count, arg_vec)
}
DefaultFunction::FstPair
| DefaultFunction::SndPair
| DefaultFunction::HeadList => {
builder::undata_builtin(&func, count, tipo, arg_vec)
}
DefaultFunction::MkCons | DefaultFunction::MkPairData => {
builder::to_data_builtin(&func, count, tipo, arg_vec)
}
_ => {
let mut term: Term<Name> = func.into();
term = builder::apply_builtin_forces(term, func.force_count());
for arg in arg_vec {
term = term.apply(arg.clone());
}
term
}
};
arg_stack.push(term);
}
Air::BinOp { name, tipo, .. } => {
let left = arg_stack.pop().unwrap();
let right = arg_stack.pop().unwrap();
let builtin = if tipo.is_int() {
Term::equals_integer()
} else if tipo.is_string() {
Term::equals_string()
} else if tipo.is_bytearray() {
Term::equals_bytestring()
} else {
Term::equals_data()
};
let term =
match name {
BinOp::And => left.delayed_if_else(right, Term::bool(false)),
BinOp::Or => left.delayed_if_else(Term::bool(true), right),
BinOp::Eq => {
if tipo.is_bool() {
let term = left.delayed_if_else(
right.clone(),
right.if_else(Term::bool(false), Term::bool(true)),
);
arg_stack.push(term);
return;
} else if tipo.is_map() {
let term = builtin
.apply(Term::map_data().apply(left))
.apply(Term::map_data().apply(right));
arg_stack.push(term);
return;
} else if tipo.is_tuple()
&& matches!(tipo.get_uplc_type(), UplcType::Pair(_, _))
{
let term = builtin
.apply(Term::map_data().apply(
Term::mk_cons().apply(left).apply(Term::empty_map()),
))
.apply(Term::map_data().apply(
Term::mk_cons().apply(right).apply(Term::empty_map()),
));
arg_stack.push(term);
return;
} else if tipo.is_list() || tipo.is_tuple() {
let term = builtin
.apply(Term::list_data().apply(left))
.apply(Term::list_data().apply(right));
arg_stack.push(term);
return;
} else if tipo.is_void() {
let term = left.choose_unit(right.choose_unit(Term::bool(true)));
arg_stack.push(term);
return;
}
builtin.apply(left).apply(right)
}
BinOp::NotEq => {
if tipo.is_bool() {
let term = left.delayed_if_else(
right.clone().if_else(Term::bool(false), Term::bool(true)),
right,
);
arg_stack.push(term);
return;
} else if tipo.is_map() {
let term = builtin
.apply(Term::map_data().apply(left))
.apply(Term::map_data().apply(right))
.if_else(Term::bool(false), Term::bool(true));
arg_stack.push(term);
return;
} else if tipo.is_tuple()
&& matches!(tipo.get_uplc_type(), UplcType::Pair(_, _))
{
let term = builtin
.apply(Term::map_data().apply(
Term::mk_cons().apply(left).apply(Term::empty_map()),
))
.apply(Term::map_data().apply(
Term::mk_cons().apply(right).apply(Term::empty_map()),
))
.if_else(Term::bool(false), Term::bool(true));
arg_stack.push(term);
return;
} else if tipo.is_list() || tipo.is_tuple() {
let term = builtin
.apply(Term::list_data().apply(left))
.apply(Term::list_data().apply(right))
.if_else(Term::bool(false), Term::bool(true));
arg_stack.push(term);
return;
} else if tipo.is_void() {
arg_stack.push(Term::bool(false));
return;
}
builtin
.apply(left)
.apply(right)
.if_else(Term::bool(false), Term::bool(true))
}
BinOp::LtInt => Term::Builtin(DefaultFunction::LessThanInteger)
.apply(left)
.apply(right),
BinOp::LtEqInt => Term::Builtin(DefaultFunction::LessThanEqualsInteger)
.apply(left)
.apply(right),
BinOp::GtEqInt => Term::Builtin(DefaultFunction::LessThanEqualsInteger)
.apply(right)
.apply(left),
BinOp::GtInt => Term::Builtin(DefaultFunction::LessThanInteger)
.apply(right)
.apply(left),
BinOp::AddInt => Term::add_integer().apply(left).apply(right),
BinOp::SubInt => Term::Builtin(DefaultFunction::SubtractInteger)
.apply(left)
.apply(right),
BinOp::MultInt => Term::Builtin(DefaultFunction::MultiplyInteger)
.apply(left)
.apply(right),
BinOp::DivInt => Term::Builtin(DefaultFunction::DivideInteger)
.apply(left)
.apply(right),
BinOp::ModInt => Term::Builtin(DefaultFunction::ModInteger)
.apply(left)
.apply(right),
};
arg_stack.push(term);
}
Air::DefineFunc {
func_name,
params,
recursive,
module_name,
variant_name,
..
} => {
let func_name = if module_name.is_empty() {
format!("{func_name}{variant_name}")
} else {
format!("{module_name}_{func_name}{variant_name}")
};
let mut func_body = arg_stack.pop().unwrap();
let mut term = arg_stack.pop().unwrap();
for param in params.iter().rev() {
func_body = func_body.lambda(param.clone());
}
if !recursive {
term = term.lambda(func_name).apply(func_body);
arg_stack.push(term);
} else {
func_body = func_body.lambda(func_name.clone());
term = term
.lambda(func_name.clone())
.apply(Term::var(func_name.clone()).apply(Term::var(func_name.clone())))
.lambda(func_name)
.apply(func_body);
arg_stack.push(term);
}
}
Air::Let { name, .. } => {
let arg = arg_stack.pop().unwrap();
let mut term = arg_stack.pop().unwrap();
term = term.lambda(name).apply(arg);
arg_stack.push(term);
}
Air::UnWrapData { tipo, .. } => {
let mut term = arg_stack.pop().unwrap();
term = builder::convert_data_to_type(term, &tipo);
arg_stack.push(term);
}
Air::WrapData { tipo, .. } => {
let mut term = arg_stack.pop().unwrap();
term = builder::convert_type_to_data(term, &tipo);
arg_stack.push(term);
}
Air::AssertConstr { constr_index, .. } => {
self.needs_field_access = true;
let constr = arg_stack.pop().unwrap();
let mut term = arg_stack.pop().unwrap();
let trace_term = if self.tracing {
Term::Error.trace(Term::string("Expected on incorrect constructor variant."))
} else {
Term::Error
};
term = Term::equals_integer()
.apply(Term::integer(constr_index.into()))
.apply(Term::var(CONSTR_INDEX_EXPOSER).apply(constr))
.delayed_if_else(term, trace_term);
arg_stack.push(term);
}
Air::AssertBool { is_true, .. } => {
let value = arg_stack.pop().unwrap();
let mut term = arg_stack.pop().unwrap();
let trace_term = if self.tracing {
Term::Error.trace(Term::string("Expected on incorrect boolean variant"))
} else {
Term::Error
};
if is_true {
term = value.delayed_if_else(term, trace_term)
} else {
term = value.delayed_if_else(trace_term, term)
}
arg_stack.push(term);
}
Air::When {
subject_name, tipo, ..
} => {
let subject = arg_stack.pop().unwrap();
let subject = if tipo.is_int()
|| tipo.is_bytearray()
|| tipo.is_string()
|| tipo.is_list()
|| tipo.is_tuple()
|| tipo.is_bool()
{
subject
} else {
self.needs_field_access = true;
Term::var(CONSTR_INDEX_EXPOSER).apply(subject)
};
let mut term = arg_stack.pop().unwrap();
term = term.lambda(subject_name).apply(subject);
arg_stack.push(term);
}
Air::Clause {
tipo,
subject_name,
complex_clause,
..
} => {
// clause to compare
let clause = arg_stack.pop().unwrap();
// the body to be run if the clause matches
let mut body = arg_stack.pop().unwrap();
// the next branch in the when expression
let mut term = arg_stack.pop().unwrap();
if tipo.is_bool() {
let other_clauses = if complex_clause {
Term::var("__other_clauses_delayed")
} else {
term.clone().delay()
};
if matches!(clause, Term::Constant(boolean) if matches!(boolean.as_ref(), UplcConstant::Bool(true)))
{
body = Term::var(subject_name)
.if_else(body.delay(), other_clauses)
.force();
} else {
body = Term::var(subject_name)
.if_else(other_clauses, body.delay())
.force();
}
if complex_clause {
term = body.lambda("__other_clauses_delayed").apply(term.delay());
} else {
term = body;
}
} else {
let condition = if tipo.is_int() {
Term::equals_integer()
.apply(clause)
.apply(Term::var(subject_name))
} else if tipo.is_bytearray() {
Term::equals_bytestring()
.apply(clause)
.apply(Term::var(subject_name))
} else if tipo.is_string() {
Term::equals_string()
.apply(clause)
.apply(Term::var(subject_name))
} else if tipo.is_list() || tipo.is_tuple() {
unreachable!("{:#?}", tipo)
} else {
Term::equals_integer()
.apply(clause)
.apply(Term::var(subject_name))
};
if complex_clause {
term = condition
.if_else(body.delay(), Term::var("__other_clauses_delayed"))
.force()
.lambda("__other_clauses_delayed")
.apply(term.delay());
} else {
term = condition.delayed_if_else(body, term);
}
}
arg_stack.push(term);
}
Air::ListClause {
tail_name,
next_tail_name,
complex_clause,
..
} => {
// discard to pop off
let _ = arg_stack.pop().unwrap();
let body = arg_stack.pop().unwrap();
let mut term = arg_stack.pop().unwrap();
let arg = if let Some(next_tail_name) = next_tail_name {
term.lambda(next_tail_name)
.apply(Term::tail_list().apply(Term::var(tail_name.clone())))
} else {
term
};
if complex_clause {
term = Term::var(tail_name)
.choose_list(body.delay(), Term::var("__other_clauses_delayed"))
.force()
.lambda("__other_clauses_delayed")
.apply(arg.delay());
} else {
term = Term::var(tail_name).delayed_choose_list(body, arg);
}
arg_stack.push(term);
}
Air::WrapClause { .. } => {
let _ = arg_stack.pop().unwrap();
let mut term = arg_stack.pop().unwrap();
let arg = arg_stack.pop().unwrap();
term = term.lambda("__other_clauses_delayed").apply(arg.delay());
arg_stack.push(term);
}
Air::ClauseGuard {
subject_name, tipo, ..
} => {
let checker = arg_stack.pop().unwrap();
let then = arg_stack.pop().unwrap();
if tipo.is_bool() {
let mut term = Term::var("__other_clauses_delayed");
if matches!(checker, Term::Constant(boolean) if matches!(boolean.as_ref(), UplcConstant::Bool(true)))
{
term = Term::var(subject_name).if_else(then.delay(), term).force();
} else {
term = Term::var(subject_name).if_else(term, then.delay()).force();
}
arg_stack.push(term);
} else {
let condition = if tipo.is_int() {
Term::equals_integer()
.apply(checker)
.apply(Term::var(subject_name))
} else if tipo.is_bytearray() {
Term::equals_bytestring()
.apply(checker)
.apply(Term::var(subject_name))
} else if tipo.is_string() {
Term::equals_string()
.apply(checker)
.apply(Term::var(subject_name))
} else if tipo.is_list() || tipo.is_tuple() {
unreachable!()
} else {
self.needs_field_access = true;
Term::equals_integer()
.apply(checker)
.apply(Term::var(CONSTR_INDEX_EXPOSER).apply(Term::var(subject_name)))
};
let term = condition
.if_else(then.delay(), Term::var("__other_clauses_delayed"))
.force();
arg_stack.push(term);
}
}
Air::ListClauseGuard {
tail_name,
next_tail_name,
inverse,
..
} => {
// discard to pop off
let _ = arg_stack.pop().unwrap();
// the body to be run if the clause matches
// the next branch in the when expression
let mut term = arg_stack.pop().unwrap();
term = if let Some(next_tail_name) = next_tail_name {
term.lambda(next_tail_name)
.apply(Term::tail_list().apply(Term::var(tail_name.clone())))
} else {
term
};
if !inverse {
term = Term::var(tail_name)
.choose_list(term.delay(), Term::var("__other_clauses_delayed"))
.force();
} else {
term = Term::var(tail_name)
.choose_list(Term::var("__other_clauses_delayed"), term.delay())
.force();
}
arg_stack.push(term);
}
Air::Finally { .. } => {
let _clause = arg_stack.pop().unwrap();
}
Air::If { .. } => {
let condition = arg_stack.pop().unwrap();
let then = arg_stack.pop().unwrap();
let mut term = arg_stack.pop().unwrap();
term = condition.delayed_if_else(then, term);
arg_stack.push(term);
}
Air::Record {
tag: constr_index,
tipo,
count,
..
} => {
let mut arg_vec = vec![];
for _ in 0..count {
arg_vec.push(arg_stack.pop().unwrap());
}
let mut term = Term::empty_list();
for (index, arg) in arg_vec.iter().enumerate().rev() {
term = Term::mk_cons()
.apply(builder::convert_type_to_data(
arg.clone(),
&tipo.arg_types().unwrap()[index],
))
.apply(term);
}
term = Term::constr_data()
.apply(Term::integer(constr_index.into()))
.apply(term);
if arg_vec.iter().all(|item| matches!(item, Term::Constant(_))) {
let mut program: Program<Name> = Program {
version: (1, 0, 0),
term,
};
let mut interner = Interner::new();
interner.program(&mut program);
let eval_program: Program<NamedDeBruijn> = program.try_into().unwrap();
let evaluated_term: Term<NamedDeBruijn> =
eval_program.eval(ExBudget::default()).result().unwrap();
term = evaluated_term.try_into().unwrap();
}
arg_stack.push(term);
}
Air::RecordAccess {
record_index, tipo, ..
} => {
self.needs_field_access = true;
let constr = arg_stack.pop().unwrap();
let mut term = Term::var(CONSTR_GET_FIELD)
.apply(Term::var(CONSTR_FIELDS_EXPOSER).apply(constr))
.apply(Term::integer(record_index.into()));
term = builder::convert_data_to_type(term, &tipo);
arg_stack.push(term);
}
Air::FieldsExpose {
indices,
check_last_item,
..
} => {
self.needs_field_access = true;
let mut id_list = vec![];
let value = arg_stack.pop().unwrap();
let mut term = arg_stack.pop().unwrap();
let list_id = self.id_gen.next();
id_list.push(list_id);
for _ in 0..indices.len() {
id_list.push(self.id_gen.next());
}
let current_index = 0;
let names = indices.iter().cloned().map(|item| item.1).collect_vec();
let inner_types = indices.iter().cloned().map(|item| item.2).collect_vec();
term = if !indices.is_empty() {
builder::list_access_to_uplc(
&names,
&id_list,
false,
current_index,
term,
inner_types,
check_last_item,
false,
self.tracing,
)
} else {
term
};
term = term.apply(Term::var(CONSTR_FIELDS_EXPOSER).apply(value));
arg_stack.push(term);
}
Air::FieldsEmpty { .. } => {
self.needs_field_access = true;
let value = arg_stack.pop().unwrap();
let mut term = arg_stack.pop().unwrap();
let trace_term = if self.tracing {
Term::Error.trace(Term::string("Expected no fields for Constr"))
} else {
Term::Error
};
term = Term::var(CONSTR_FIELDS_EXPOSER)
.apply(value)
.delayed_choose_list(term, trace_term);
arg_stack.push(term);
}
Air::ListEmpty { .. } => {
let value = arg_stack.pop().unwrap();
let mut term = arg_stack.pop().unwrap();
let trace_term = if self.tracing {
Term::Error.trace(Term::string("Expected no items for List"))
} else {
Term::Error
};
term = value.delayed_choose_list(term, trace_term);
arg_stack.push(term);
}
Air::Tuple { tipo, count, .. } => {
let mut args = vec![];
for _ in 0..count {
let arg = arg_stack.pop().unwrap();
args.push(arg);
}
let mut constants = vec![];
for arg in &args {
if let Term::Constant(c) = arg {
constants.push(c.clone())
}
}
let tuple_sub_types = tipo.get_inner_types();
if constants.len() == args.len() {
let data_constants = builder::convert_constants_to_data(constants);
if count == 2 {
let term = Term::Constant(
UplcConstant::ProtoPair(
UplcType::Data,
UplcType::Data,
data_constants[0].clone().into(),
data_constants[1].clone().into(),
)
.into(),
);
arg_stack.push(term);
} else {
let term = Term::Constant(
UplcConstant::ProtoList(UplcType::Data, data_constants).into(),
);
arg_stack.push(term);
}
} else if count == 2 {
let term = Term::mk_pair_data()
.apply(builder::convert_type_to_data(
args[0].clone(),
&tuple_sub_types[0],
))
.apply(builder::convert_type_to_data(
args[1].clone(),
&tuple_sub_types[1],
));
arg_stack.push(term);
} else {
let mut term = Term::empty_list();
for (arg, tipo) in args.into_iter().zip(tuple_sub_types.into_iter()).rev() {
term = Term::mk_cons()
.apply(builder::convert_type_to_data(arg, &tipo))
.apply(term);
}
arg_stack.push(term);
}
}
Air::RecordUpdate {
highest_index,
indices,
tipo,
..
} => {
self.needs_field_access = true;
let tail_name_prefix = "__tail_index";
let data_type = lookup_data_type_by_tipo(&self.data_types, &tipo)
.unwrap_or_else(|| panic!("HOW DID YOU DO THIS ON BOOL OR VOID"));
let constructor_field_count = data_type.constructors[0].arguments.len();
let record = arg_stack.pop().unwrap();
let mut args = IndexMap::new();
let mut unchanged_field_indices = vec![];
// plus 2 so we get one index higher than the record update index
// then we add that and any other unchanged fields to an array to later create the
// lambda bindings
unchanged_field_indices.push(0);
let mut prev_index = 0;
for (index, tipo) in indices
.into_iter()
.sorted_by(|(index1, _), (index2, _)| index1.cmp(index2))
{
let arg = arg_stack.pop().unwrap();
args.insert(index, (tipo.clone(), arg));
for field_index in (prev_index + 1)..index {
unchanged_field_indices.push(field_index);
}
prev_index = index;
}
unchanged_field_indices.push(prev_index + 1);
let mut term = Term::var(format!("{tail_name_prefix}_{}", highest_index + 1));
for current_index in (0..(highest_index + 1)).rev() {
let tail_name = format!("{tail_name_prefix}_{current_index}");
if let Some((tipo, arg)) = args.get(&current_index) {
term = Term::mk_cons()
.apply(builder::convert_type_to_data(arg.clone(), tipo))
.apply(term);
} else {
term = Term::mk_cons()
.apply(Term::head_list().apply(Term::var(tail_name)))
.apply(term);
}
}
term = Term::constr_data()
.apply(Term::integer(0.into()))
.apply(term);
if unchanged_field_indices.len() > 1 {
let (prev_index, rest_list) = unchanged_field_indices
.split_last()
.unwrap_or_else(|| panic!("WHAT HAPPENED"));
let mut prev_index = *prev_index;
for index in rest_list.iter().rev() {
let index = *index;
let suffix_tail = format!("{tail_name_prefix}_{prev_index}");
let tail = format!("{tail_name_prefix}_{index}");
let mut tail_list = Term::var(tail);
if index < prev_index {
tail_list = tail_list.repeat_tail_list(prev_index - index);
if prev_index == constructor_field_count {
term = term.lambda(suffix_tail).apply(Term::empty_list());
} else {
term = term.lambda(suffix_tail).apply(tail_list);
}
}
prev_index = index;
}
}
term = term
.lambda(format!("{tail_name_prefix}_0"))
.apply(Term::var(CONSTR_FIELDS_EXPOSER).apply(record));
arg_stack.push(term);
}
Air::UnOp { op, .. } => {
let value = arg_stack.pop().unwrap();
let term = match op {
UnOp::Not => value.if_else(Term::bool(false), Term::bool(true)),
UnOp::Negate => {
if let Term::Constant(c) = &value {
if let UplcConstant::Integer(i) = c.as_ref() {
Term::integer(-i)
} else {
Term::sub_integer()
.apply(Term::integer(0.into()))
.apply(value)
}
} else {
Term::sub_integer()
.apply(Term::integer(0.into()))
.apply(value)
}
}
};
arg_stack.push(term);
}
Air::TupleIndex {
tipo, tuple_index, ..
} => {
let mut term = arg_stack.pop().unwrap();
if matches!(tipo.get_uplc_type(), UplcType::Pair(_, _)) {
if tuple_index == 0 {
term = builder::convert_data_to_type(
Term::fst_pair().apply(term),
&tipo.get_inner_types()[0],
);
} else {
term = builder::convert_data_to_type(
Term::snd_pair().apply(term),
&tipo.get_inner_types()[1],
);
}
} else {
self.needs_field_access = true;
term = builder::convert_data_to_type(
Term::var(CONSTR_GET_FIELD)
.apply(term)
.apply(Term::integer(tuple_index.into())),
&tipo.get_inner_types()[tuple_index],
);
}
arg_stack.push(term);
}
Air::TupleAccessor {
tipo,
names,
check_last_item,
..
} => {
let inner_types = tipo.get_inner_types();
let value = arg_stack.pop().unwrap();
let mut term = arg_stack.pop().unwrap();
let list_id = self.id_gen.next();
if names.len() == 2 {
term = term
.lambda(names[1].clone())
.apply(builder::convert_data_to_type(
Term::snd_pair().apply(Term::var(format!("__tuple_{list_id}"))),
&inner_types[1],
))
.lambda(names[0].clone())
.apply(builder::convert_data_to_type(
Term::fst_pair().apply(Term::var(format!("__tuple_{list_id}"))),
&inner_types[0],
))
.lambda(format!("__tuple_{list_id}"))
.apply(value);
} else {
let mut id_list = vec![];
id_list.push(list_id);
for _ in 0..names.len() {
id_list.push(self.id_gen.next());
}
term = builder::list_access_to_uplc(
&names,
&id_list,
false,
0,
term,
tipo.get_inner_types(),
check_last_item,
false,
self.tracing,
)
.apply(value);
}
arg_stack.push(term);
}
Air::Trace { .. } => {
let text = arg_stack.pop().unwrap();
let term = arg_stack.pop().unwrap();
let term = term.trace(text);
arg_stack.push(term);
}
Air::ErrorTerm { .. } => arg_stack.push(Term::Error),
Air::TupleClause {
tipo,
indices,
subject_name,
complex_clause,
..
} => {
let mut term = arg_stack.pop().unwrap();
let tuple_types = tipo.get_inner_types();
if complex_clause {
let next_clause = arg_stack.pop().unwrap();
term = term
.lambda("__other_clauses_delayed")
.apply(next_clause.delay());
}
if tuple_types.len() == 2 {
for (index, name) in indices.iter() {
let builtin = if *index == 0 {
Term::fst_pair()
} else {
Term::snd_pair()
};
term = term.lambda(name).apply(builder::convert_data_to_type(
builtin.apply(Term::var(subject_name.clone())),
&tuple_types[*index].clone(),
));
}
} else {
for (index, name) in indices.iter() {
term = term
.lambda(name.clone())
.apply(builder::convert_data_to_type(
Term::head_list().apply(
Term::var(subject_name.clone()).repeat_tail_list(*index),
),
&tuple_types[*index].clone(),
));
}
}
arg_stack.push(term);
}
Air::NoOp { .. } => {}
}
}
pub fn wrap_validator_args(
&mut self,
validator_stack: &mut AirStack,
arguments: &[TypedArg],
has_context: bool,
) {
let mut arg_stack = validator_stack.empty_with_scope();
for (index, arg) in arguments.iter().enumerate().rev() {
let arg_name = arg.arg_name.get_variable_name().unwrap_or("_").to_string();
if !(has_context && index == arguments.len() - 1) && &arg_name != "_" {
let mut param_stack = validator_stack.empty_with_scope();
let mut value_stack = validator_stack.empty_with_scope();
param_stack.local_var(data(), arg.arg_name.get_variable_name().unwrap_or("_"));
let mut actual_type = arg.tipo.clone();
replace_opaque_type(&mut actual_type, &self.data_types);
self.assignment(
&Pattern::Var {
location: Span::empty(),
name: arg_name.to_string(),
},
&mut value_stack,
param_stack,
&actual_type,
AssignmentProperties {
value_type: data(),
kind: AssignmentKind::Expect,
},
);
value_stack.local_var(actual_type, &arg_name);
arg_stack.let_assignment(arg_name, value_stack);
}
}
validator_stack.anonymous_function(
arguments
.iter()
.map(|arg| arg.arg_name.get_variable_name().unwrap_or("_").to_string())
.collect_vec(),
arg_stack,
)
}
}
fn process_scope_updates(
to_be_defined_map: &mut IndexMap<FunctionAccessKey, Scope>,
scope: &Scope,
func_index_map: &mut IndexMap<FunctionAccessKey, Scope>,
) {
for func in to_be_defined_map.clone().iter() {
if &scope.common_ancestor(func.1) == scope {
if let Some(index_scope) = func_index_map.get(func.0) {
if &index_scope.common_ancestor(func.1) == scope {
func_index_map.insert(func.0.clone(), scope.clone());
to_be_defined_map.shift_remove(func.0);
} else {
to_be_defined_map.insert(func.0.clone(), index_scope.common_ancestor(func.1));
}
} else {
func_index_map.insert(func.0.clone(), scope.clone());
to_be_defined_map.shift_remove(func.0);
}
}
}
}