aiken/crates/uplc/src/flat.rs

766 lines
21 KiB
Rust

use std::{collections::VecDeque, fmt::Debug, rc::Rc};
use flat_rs::{
de::{self, Decode, Decoder},
en::{self, Encode, Encoder},
Flat,
};
use pallas_primitives::{babbage::PlutusData, Fragment};
use crate::{
ast::{
Constant, DeBruijn, FakeNamedDeBruijn, Name, NamedDeBruijn, Program, Term, Type, Unique,
},
builtins::DefaultFunction,
};
const BUILTIN_TAG_WIDTH: u32 = 7;
const CONST_TAG_WIDTH: u32 = 4;
const TERM_TAG_WIDTH: u32 = 4;
pub trait Binder<'b>: Encode + Decode<'b> {
fn binder_encode(&self, e: &mut Encoder) -> Result<(), en::Error>;
fn binder_decode(d: &mut Decoder) -> Result<Self, de::Error>;
fn text(&self) -> &str;
}
impl<'b, T> Flat<'b> for Program<T> where T: Binder<'b> + Debug {}
impl<'b, T> Program<T>
where
T: Binder<'b> + Debug,
{
pub fn from_cbor(bytes: &'b [u8], buffer: &'b mut Vec<u8>) -> Result<Self, de::Error> {
let mut cbor_decoder = minicbor::Decoder::new(bytes);
let flat_bytes = cbor_decoder
.bytes()
.map_err(|err| de::Error::Message(err.to_string()))?;
buffer.extend(flat_bytes);
Self::unflat(buffer)
}
pub fn from_flat(bytes: &'b [u8]) -> Result<Self, de::Error> {
Self::unflat(bytes)
}
pub fn from_hex(
hex_str: &str,
cbor_buffer: &'b mut Vec<u8>,
flat_buffer: &'b mut Vec<u8>,
) -> Result<Self, de::Error> {
let cbor_bytes = hex::decode(hex_str).map_err(|err| de::Error::Message(err.to_string()))?;
cbor_buffer.extend(cbor_bytes);
Self::from_cbor(cbor_buffer, flat_buffer)
}
pub fn to_cbor(&self) -> Result<Vec<u8>, en::Error> {
let flat_bytes = self.flat()?;
let mut bytes = Vec::new();
let mut cbor_encoder = minicbor::Encoder::new(&mut bytes);
cbor_encoder
.bytes(&flat_bytes)
.map_err(|err| en::Error::Message(err.to_string()))?;
Ok(bytes)
}
// convenient so that people don't need to depend on the flat crate
// directly to call programs flat function
pub fn to_flat(&self) -> Result<Vec<u8>, en::Error> {
self.flat()
}
pub fn to_hex(&self) -> Result<String, en::Error> {
let bytes = self.to_cbor()?;
let hex = hex::encode(&bytes);
Ok(hex)
}
}
impl<'b, T> Encode for Program<T>
where
T: Binder<'b> + Debug,
{
fn encode(&self, e: &mut Encoder) -> Result<(), en::Error> {
let (major, minor, patch) = self.version;
major.encode(e)?;
minor.encode(e)?;
patch.encode(e)?;
self.term.encode(e)?;
Ok(())
}
}
impl<'b, T> Decode<'b> for Program<T>
where
T: Binder<'b>,
{
fn decode(d: &mut Decoder) -> Result<Self, de::Error> {
let version = (usize::decode(d)?, usize::decode(d)?, usize::decode(d)?);
let term = Term::decode(d)?;
Ok(Program { version, term })
}
}
impl<'b, T> Encode for Term<T>
where
T: Binder<'b> + Debug,
{
fn encode(&self, e: &mut Encoder) -> Result<(), en::Error> {
match self {
Term::Var(name) => {
encode_term_tag(0, e)?;
name.encode(e)?;
}
Term::Delay(term) => {
encode_term_tag(1, e)?;
term.encode(e)?;
}
Term::Lambda {
parameter_name,
body,
} => {
encode_term_tag(2, e)?;
parameter_name.binder_encode(e)?;
body.encode(e)?;
}
Term::Apply { function, argument } => {
encode_term_tag(3, e)?;
function.encode(e)?;
argument.encode(e)?;
}
Term::Constant(constant) => {
encode_term_tag(4, e)?;
constant.encode(e)?;
}
Term::Force(term) => {
encode_term_tag(5, e)?;
term.encode(e)?;
}
Term::Error => {
encode_term_tag(6, e)?;
}
Term::Builtin(builtin) => {
encode_term_tag(7, e)?;
builtin.encode(e)?;
}
}
Ok(())
}
}
impl<'b, T> Decode<'b> for Term<T>
where
T: Binder<'b>,
{
fn decode(d: &mut Decoder) -> Result<Self, de::Error> {
match decode_term_tag(d)? {
0 => Ok(Term::Var(T::decode(d)?)),
1 => Ok(Term::Delay(Rc::new(Term::decode(d)?))),
2 => Ok(Term::Lambda {
parameter_name: T::binder_decode(d)?,
body: Rc::new(Term::decode(d)?),
}),
3 => Ok(Term::Apply {
function: Rc::new(Term::decode(d)?),
argument: Rc::new(Term::decode(d)?),
}),
// Need size limit for Constant
4 => Ok(Term::Constant(Constant::decode(d)?)),
5 => Ok(Term::Force(Rc::new(Term::decode(d)?))),
6 => Ok(Term::Error),
7 => Ok(Term::Builtin(DefaultFunction::decode(d)?)),
x => Err(de::Error::Message(format!(
"Unknown term constructor tag: {}",
x
))),
}
}
}
/// Integers are typically smaller so we save space
/// by encoding them in 7 bits and this allows it to be byte alignment agnostic.
/// Strings and bytestrings span multiple bytes so using bytestring is
/// the most effective encoding.
/// i.e. A 17 or greater length byte array loses efficiency being encoded as
/// a unsigned integer instead of a byte array
impl Encode for Constant {
fn encode(&self, e: &mut Encoder) -> Result<(), en::Error> {
match self {
Constant::Integer(i) => {
encode_constant(&[0], e)?;
i.encode(e)?;
}
Constant::ByteString(bytes) => {
encode_constant(&[1], e)?;
bytes.encode(e)?;
}
Constant::String(s) => {
encode_constant(&[2], e)?;
s.encode(e)?;
}
Constant::Unit => encode_constant(&[3], e)?,
Constant::Bool(b) => {
encode_constant(&[4], e)?;
b.encode(e)?;
}
Constant::ProtoList(typ, list) => {
let mut type_encode = vec![7, 5];
encode_type(typ, &mut type_encode);
encode_constant(&type_encode, e)?;
e.encode_list_with(list, encode_constant_value)?;
}
Constant::ProtoPair(type1, type2, a, b) => {
let mut type_encode = vec![7, 7, 6];
encode_type(type1, &mut type_encode);
encode_type(type2, &mut type_encode);
encode_constant(&type_encode, e)?;
encode_constant_value(a, e)?;
encode_constant_value(b, e)?;
}
Constant::Data(data) => {
encode_constant(&[8], e)?;
let cbor = data
.encode_fragment()
.map_err(|err| en::Error::Message(err.to_string()))?;
cbor.encode(e)?;
}
}
Ok(())
}
}
fn encode_constant_value(x: &Constant, e: &mut Encoder) -> Result<(), en::Error> {
match x {
Constant::Integer(x) => x.encode(e),
Constant::ByteString(b) => b.encode(e),
Constant::String(s) => s.encode(e),
Constant::Unit => Ok(()),
Constant::Bool(b) => b.encode(e),
Constant::ProtoList(_, list) => {
e.encode_list_with(list, encode_constant_value)?;
Ok(())
}
Constant::ProtoPair(_, _, a, b) => {
encode_constant_value(a, e)?;
encode_constant_value(b, e)
}
Constant::Data(data) => {
let cbor = data
.encode_fragment()
.map_err(|err| en::Error::Message(err.to_string()))?;
cbor.encode(e)
}
}
}
fn encode_type(typ: &Type, bytes: &mut Vec<u8>) {
match typ {
Type::Bool => bytes.push(4),
Type::Integer => bytes.push(0),
Type::String => bytes.push(2),
Type::ByteString => bytes.push(1),
Type::Unit => bytes.push(3),
Type::List(sub_typ) => {
bytes.extend(vec![7, 5]);
encode_type(sub_typ, bytes);
}
Type::Pair(type1, type2) => {
bytes.extend(vec![7, 7, 6]);
encode_type(type1, bytes);
encode_type(type2, bytes);
}
Type::Data => bytes.push(8),
}
}
impl<'b> Decode<'b> for Constant {
fn decode(d: &mut Decoder) -> Result<Self, de::Error> {
match &decode_constant(d)?[..] {
[0] => Ok(Constant::Integer(isize::decode(d)?)),
[1] => Ok(Constant::ByteString(Vec::<u8>::decode(d)?)),
[2] => Ok(Constant::String(String::decode(d)?)),
[3] => Ok(Constant::Unit),
[4] => Ok(Constant::Bool(bool::decode(d)?)),
[7, 5, rest @ ..] => {
let mut rest = VecDeque::from(rest.to_vec());
let typ = decode_type(&mut rest)?;
let list: Vec<Constant> =
d.decode_list_with(|d| decode_constant_value(typ.clone(), d))?;
Ok(Constant::ProtoList(typ, list))
}
[7, 7, 6, rest @ ..] => {
let mut rest = VecDeque::from(rest.to_vec());
let type1 = decode_type(&mut rest)?;
let type2 = decode_type(&mut rest)?;
let a = decode_constant_value(type1.clone(), d)?;
let b = decode_constant_value(type2.clone(), d)?;
Ok(Constant::ProtoPair(type1, type2, Box::new(a), Box::new(b)))
}
[8] => {
let cbor = Vec::<u8>::decode(d)?;
let data = PlutusData::decode_fragment(&cbor)
.map_err(|err| de::Error::Message(err.to_string()))?;
Ok(Constant::Data(data))
}
x => Err(de::Error::Message(format!(
"Unknown constant constructor tag: {:?}",
x
))),
}
}
}
fn decode_constant_value(typ: Type, d: &mut Decoder) -> Result<Constant, de::Error> {
match typ {
Type::Integer => Ok(Constant::Integer(isize::decode(d)?)),
Type::ByteString => Ok(Constant::ByteString(Vec::<u8>::decode(d)?)),
Type::String => Ok(Constant::String(String::decode(d)?)),
Type::Unit => Ok(Constant::Unit),
Type::Bool => Ok(Constant::Bool(bool::decode(d)?)),
Type::List(sub_type) => {
let list: Vec<Constant> =
d.decode_list_with(|d| decode_constant_value(*sub_type.clone(), d))?;
Ok(Constant::ProtoList(*sub_type, list))
}
Type::Pair(type1, type2) => {
let a = decode_constant_value(*type1.clone(), d)?;
let b = decode_constant_value(*type2.clone(), d)?;
Ok(Constant::ProtoPair(
*type1,
*type2,
Box::new(a),
Box::new(b),
))
}
Type::Data => {
let cbor = Vec::<u8>::decode(d)?;
let data = PlutusData::decode_fragment(&cbor)
.map_err(|err| de::Error::Message(err.to_string()))?;
Ok(Constant::Data(data))
}
}
}
fn decode_type(types: &mut VecDeque<u8>) -> Result<Type, de::Error> {
match types.pop_front() {
Some(4) => Ok(Type::Bool),
Some(0) => Ok(Type::Integer),
Some(2) => Ok(Type::String),
Some(1) => Ok(Type::ByteString),
Some(3) => Ok(Type::Unit),
Some(8) => Ok(Type::Data),
Some(7) => match types.pop_front() {
Some(5) => Ok(Type::List(Box::new(decode_type(types)?))),
Some(7) => match types.pop_front() {
Some(6) => {
let type1 = decode_type(types)?;
let type2 = decode_type(types)?;
Ok(Type::Pair(Box::new(type1), Box::new(type2)))
}
Some(x) => Err(de::Error::Message(format!(
"Unknown constant type tag: {}",
x
))),
None => Err(de::Error::Message("Unexpected empty buffer".to_string())),
},
Some(x) => Err(de::Error::Message(format!(
"Unknown constant type tag: {}",
x
))),
None => Err(de::Error::Message("Unexpected empty buffer".to_string())),
},
Some(x) => Err(de::Error::Message(format!(
"Unknown constant type tag: {}",
x
))),
None => Err(de::Error::Message("Unexpected empty buffer".to_string())),
}
}
impl Encode for Unique {
fn encode(&self, e: &mut Encoder) -> Result<(), en::Error> {
isize::from(*self).encode(e)?;
Ok(())
}
}
impl<'b> Decode<'b> for Unique {
fn decode(d: &mut Decoder) -> Result<Self, de::Error> {
Ok(isize::decode(d)?.into())
}
}
impl Encode for Name {
fn encode(&self, e: &mut Encoder) -> Result<(), en::Error> {
self.text.encode(e)?;
self.unique.encode(e)?;
Ok(())
}
}
impl<'b> Decode<'b> for Name {
fn decode(d: &mut Decoder) -> Result<Self, de::Error> {
Ok(Name {
text: String::decode(d)?,
unique: Unique::decode(d)?,
})
}
}
impl<'b> Binder<'b> for Name {
fn binder_encode(&self, e: &mut Encoder) -> Result<(), en::Error> {
self.encode(e)?;
Ok(())
}
fn binder_decode(d: &mut Decoder) -> Result<Self, de::Error> {
Name::decode(d)
}
fn text(&self) -> &str {
&self.text
}
}
impl Encode for NamedDeBruijn {
fn encode(&self, e: &mut Encoder) -> Result<(), en::Error> {
self.text.encode(e)?;
self.index.encode(e)?;
Ok(())
}
}
impl<'b> Decode<'b> for NamedDeBruijn {
fn decode(d: &mut Decoder) -> Result<Self, de::Error> {
Ok(NamedDeBruijn {
text: String::decode(d)?,
index: DeBruijn::decode(d)?,
})
}
}
impl<'b> Binder<'b> for NamedDeBruijn {
fn binder_encode(&self, e: &mut Encoder) -> Result<(), en::Error> {
self.text.encode(e)?;
Ok(())
}
fn binder_decode(d: &mut Decoder) -> Result<Self, de::Error> {
Ok(NamedDeBruijn {
text: String::decode(d)?,
index: DeBruijn::new(0),
})
}
fn text(&self) -> &str {
&self.text
}
}
impl Encode for DeBruijn {
fn encode(&self, e: &mut Encoder) -> Result<(), en::Error> {
usize::from(*self).encode(e)?;
Ok(())
}
}
impl<'b> Decode<'b> for DeBruijn {
fn decode(d: &mut Decoder) -> Result<Self, de::Error> {
Ok(usize::decode(d)?.into())
}
}
impl<'b> Binder<'b> for DeBruijn {
fn binder_encode(&self, _: &mut Encoder) -> Result<(), en::Error> {
Ok(())
}
fn binder_decode(_d: &mut Decoder) -> Result<Self, de::Error> {
Ok(DeBruijn::new(0))
}
fn text(&self) -> &str {
"i"
}
}
impl Encode for FakeNamedDeBruijn {
fn encode(&self, e: &mut Encoder) -> Result<(), en::Error> {
let index: DeBruijn = self.clone().into();
index.encode(e)?;
Ok(())
}
}
impl<'b> Decode<'b> for FakeNamedDeBruijn {
fn decode(d: &mut Decoder) -> Result<Self, de::Error> {
let index = DeBruijn::decode(d)?;
Ok(index.into())
}
}
impl<'b> Binder<'b> for FakeNamedDeBruijn {
fn binder_encode(&self, _: &mut Encoder) -> Result<(), en::Error> {
Ok(())
}
fn binder_decode(_d: &mut Decoder) -> Result<Self, de::Error> {
let index = DeBruijn::new(0);
Ok(index.into())
}
fn text(&self) -> &str {
&self.0.text
}
}
impl Encode for DefaultFunction {
fn encode(&self, e: &mut Encoder) -> Result<(), en::Error> {
e.bits(BUILTIN_TAG_WIDTH as i64, *self as u8);
Ok(())
}
}
impl<'b> Decode<'b> for DefaultFunction {
fn decode(d: &mut Decoder) -> Result<Self, de::Error> {
let builtin_tag = d.bits8(BUILTIN_TAG_WIDTH as usize)?;
builtin_tag.try_into()
}
}
fn encode_term_tag(tag: u8, e: &mut Encoder) -> Result<(), en::Error> {
safe_encode_bits(TERM_TAG_WIDTH, tag, e)
}
fn decode_term_tag(d: &mut Decoder) -> Result<u8, de::Error> {
d.bits8(TERM_TAG_WIDTH as usize)
}
fn safe_encode_bits(num_bits: u32, byte: u8, e: &mut Encoder) -> Result<(), en::Error> {
if 2_u8.pow(num_bits) < byte {
Err(en::Error::Message(format!(
"Overflow detected, cannot fit {} in {} bits.",
byte, num_bits
)))
} else {
e.bits(num_bits as i64, byte);
Ok(())
}
}
pub fn encode_constant(tag: &[u8], e: &mut Encoder) -> Result<(), en::Error> {
e.encode_list_with(tag, encode_constant_tag)?;
Ok(())
}
pub fn decode_constant(d: &mut Decoder) -> Result<Vec<u8>, de::Error> {
d.decode_list_with(decode_constant_tag)
}
pub fn encode_constant_tag(tag: &u8, e: &mut Encoder) -> Result<(), en::Error> {
safe_encode_bits(CONST_TAG_WIDTH, *tag, e)
}
pub fn decode_constant_tag(d: &mut Decoder) -> Result<u8, de::Error> {
d.bits8(CONST_TAG_WIDTH as usize)
}
#[cfg(test)]
mod test {
use flat_rs::Flat;
use crate::ast::{Name, Type};
use super::{Constant, Program, Term};
#[test]
fn flat_encode_integer() {
let program = Program::<Name> {
version: (11, 22, 33),
term: Term::Constant(Constant::Integer(11)),
};
let expected_bytes = vec![
0b00001011, 0b00010110, 0b00100001, 0b01001000, 0b00000101, 0b10000001,
];
let actual_bytes = program.to_flat().unwrap();
assert_eq!(actual_bytes, expected_bytes)
}
#[test]
fn flat_encode_list_list_integer() {
let program = Program::<Name> {
version: (1, 0, 0),
term: Term::Constant(Constant::ProtoList(
Type::List(Box::new(Type::Integer)),
vec![
Constant::ProtoList(Type::Integer, vec![Constant::Integer(7)]),
Constant::ProtoList(Type::Integer, vec![Constant::Integer(5)]),
],
)),
};
let expected_bytes = vec![
0b00000001, 0b00000000, 0b00000000, 0b01001011, 0b11010110, 0b11110101, 0b10000011,
0b00001110, 0b01100001, 0b01000001,
];
let actual_bytes = program.to_flat().unwrap();
assert_eq!(actual_bytes, expected_bytes)
}
#[test]
fn flat_encode_pair_pair_integer_bool_integer() {
let program = Program::<Name> {
version: (1, 0, 0),
term: Term::Constant(Constant::ProtoPair(
Type::Pair(Box::new(Type::Integer), Box::new(Type::Bool)),
Type::Integer,
Box::new(Constant::ProtoPair(
Type::Integer,
Type::Bool,
Box::new(Constant::Integer(11)),
Box::new(Constant::Bool(true)),
)),
Box::new(Constant::Integer(11)),
)),
};
let expected_bytes = vec![
0b00000001, 0b00000000, 0b00000000, 0b01001011, 0b11011110, 0b11010111, 0b10111101,
0b10100001, 0b01001000, 0b00000101, 0b10100010, 0b11000001,
];
let actual_bytes = program.to_flat().unwrap();
assert_eq!(actual_bytes, expected_bytes)
}
#[test]
fn flat_decode_list_list_integer() {
let bytes = vec![
0b00000001, 0b00000000, 0b00000000, 0b01001011, 0b11010110, 0b11110101, 0b10000011,
0b00001110, 0b01100001, 0b01000001,
];
let expected_program = Program::<Name> {
version: (1, 0, 0),
term: Term::Constant(Constant::ProtoList(
Type::List(Box::new(Type::Integer)),
vec![
Constant::ProtoList(Type::Integer, vec![Constant::Integer(7)]),
Constant::ProtoList(Type::Integer, vec![Constant::Integer(5)]),
],
)),
};
let actual_program: Program<Name> = Program::unflat(&bytes).unwrap();
assert_eq!(actual_program, expected_program)
}
#[test]
fn flat_decode_pair_pair_integer_bool_integer() {
let bytes = vec![
0b00000001, 0b00000000, 0b00000000, 0b01001011, 0b11011110, 0b11010111, 0b10111101,
0b10100001, 0b01001000, 0b00000101, 0b10100010, 0b11000001,
];
let expected_program = Program::<Name> {
version: (1, 0, 0),
term: Term::Constant(Constant::ProtoPair(
Type::Pair(Box::new(Type::Integer), Box::new(Type::Bool)),
Type::Integer,
Box::new(Constant::ProtoPair(
Type::Integer,
Type::Bool,
Box::new(Constant::Integer(11)),
Box::new(Constant::Bool(true)),
)),
Box::new(Constant::Integer(11)),
)),
};
let actual_program: Program<Name> = Program::unflat(&bytes).unwrap();
assert_eq!(actual_program, expected_program)
}
#[test]
fn flat_decode_integer() {
let bytes = vec![
0b00001011, 0b00010110, 0b00100001, 0b01001000, 0b00000101, 0b10000001,
];
let expected_program = Program {
version: (11, 22, 33),
term: Term::Constant(Constant::Integer(11)),
};
let actual_program: Program<Name> = Program::unflat(&bytes).unwrap();
assert_eq!(actual_program, expected_program)
}
}