1937 lines
60 KiB
Rust
1937 lines
60 KiB
Rust
use crate::ast::TypedPattern;
|
|
use std::{cmp::Ordering, collections::HashMap, sync::Arc};
|
|
|
|
use vec1::Vec1;
|
|
|
|
use crate::{
|
|
ast::{
|
|
Annotation, Arg, ArgName, AssignmentKind, BinOp, ByteArrayFormatPreference, CallArg,
|
|
ClauseGuard, Constant, IfBranch, RecordUpdateSpread, Span, TraceKind, Tracing, TypedArg,
|
|
TypedCallArg, TypedClause, TypedClauseGuard, TypedIfBranch, TypedRecordUpdateArg, UnOp,
|
|
UntypedArg, UntypedClause, UntypedClauseGuard, UntypedIfBranch, UntypedPattern,
|
|
UntypedRecordUpdateArg,
|
|
},
|
|
builtins::{bool, byte_array, function, int, list, string, tuple},
|
|
expr::{TypedExpr, UntypedExpr},
|
|
format,
|
|
tipo::fields::FieldMap,
|
|
};
|
|
|
|
use super::{
|
|
environment::{assert_no_labeled_arguments, collapse_links, EntityKind, Environment},
|
|
error::{Error, Warning},
|
|
hydrator::Hydrator,
|
|
pattern::PatternTyper,
|
|
pipe::PipeTyper,
|
|
RecordAccessor, Type, ValueConstructor, ValueConstructorVariant,
|
|
};
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) struct ExprTyper<'a, 'b> {
|
|
pub(crate) environment: &'a mut Environment<'b>,
|
|
|
|
// We tweak the tracing behavior during type-check. Traces are either kept or left out of the
|
|
// typed AST depending on this setting.
|
|
pub(crate) tracing: Tracing,
|
|
|
|
// Type hydrator for creating types from annotations
|
|
pub(crate) hydrator: Hydrator,
|
|
|
|
// We keep track of whether any ungeneralised functions have been used
|
|
// to determine whether it is safe to generalise this expression after
|
|
// it has been inferred.
|
|
pub(crate) ungeneralised_function_used: bool,
|
|
}
|
|
|
|
impl<'a, 'b> ExprTyper<'a, 'b> {
|
|
fn check_when_exhaustiveness(
|
|
&mut self,
|
|
subject: &Type,
|
|
typed_clauses: &[TypedClause],
|
|
location: Span,
|
|
) -> Result<(), Vec<String>> {
|
|
let value_typ = collapse_links(Arc::new(subject.clone()));
|
|
|
|
// Currently guards in exhaustiveness checking are assumed that they can fail,
|
|
// so we go through all clauses and pluck out only the patterns
|
|
// for clauses that don't have guards.
|
|
let mut patterns = Vec::new();
|
|
for clause in typed_clauses {
|
|
if let TypedClause {
|
|
guard: None,
|
|
pattern,
|
|
..
|
|
} = clause
|
|
{
|
|
patterns.push(pattern.clone())
|
|
}
|
|
}
|
|
|
|
self.environment
|
|
.check_exhaustiveness(patterns, value_typ, location)
|
|
}
|
|
|
|
pub fn do_infer_call(
|
|
&mut self,
|
|
fun: UntypedExpr,
|
|
args: Vec<CallArg<UntypedExpr>>,
|
|
location: Span,
|
|
) -> Result<(TypedExpr, Vec<TypedCallArg>, Arc<Type>), Error> {
|
|
let fun = self.infer(fun)?;
|
|
|
|
let (fun, args, typ) = self.do_infer_call_with_known_fun(fun, args, location)?;
|
|
|
|
Ok((fun, args, typ))
|
|
}
|
|
|
|
pub fn do_infer_call_with_known_fun(
|
|
&mut self,
|
|
fun: TypedExpr,
|
|
mut args: Vec<CallArg<UntypedExpr>>,
|
|
location: Span,
|
|
) -> Result<(TypedExpr, Vec<TypedCallArg>, Arc<Type>), Error> {
|
|
// Check to see if the function accepts labelled arguments
|
|
match self.get_field_map(&fun, location)? {
|
|
// The fun has a field map so labelled arguments may be present and need to be reordered.
|
|
Some(field_map) => field_map.reorder(&mut args, location)?,
|
|
|
|
// The fun has no field map and so we error if arguments have been labelled
|
|
None => assert_no_labeled_arguments(&args)
|
|
.map(|(location, label)| Err(Error::UnexpectedLabeledArg { location, label }))
|
|
.unwrap_or(Ok(()))?,
|
|
}
|
|
|
|
// Extract the type of the fun, ensuring it actually is a function
|
|
let (mut args_types, return_type) =
|
|
self.environment
|
|
.match_fun_type(fun.tipo(), args.len(), fun.location(), location)?;
|
|
|
|
let mut arguments = Vec::new();
|
|
|
|
for (tipo, arg) in args_types.iter_mut().zip(args) {
|
|
let CallArg {
|
|
label,
|
|
value,
|
|
location,
|
|
} = arg;
|
|
|
|
let value = self.infer_call_argument(value, tipo.clone())?;
|
|
|
|
arguments.push(CallArg {
|
|
label,
|
|
value,
|
|
location,
|
|
});
|
|
}
|
|
|
|
Ok((fun, arguments, return_type))
|
|
}
|
|
|
|
pub fn do_infer_fn(
|
|
&mut self,
|
|
args: Vec<UntypedArg>,
|
|
expected_args: &[Arc<Type>],
|
|
body: UntypedExpr,
|
|
return_annotation: &Option<Annotation>,
|
|
) -> Result<(Vec<TypedArg>, TypedExpr), Error> {
|
|
// Construct an initial type for each argument of the function- either an unbound
|
|
// type variable or a type provided by an annotation.
|
|
|
|
let mut arguments = Vec::new();
|
|
|
|
for (i, arg) in args.into_iter().enumerate() {
|
|
let arg = self.infer_param(arg, expected_args.get(i).cloned())?;
|
|
|
|
arguments.push(arg);
|
|
}
|
|
|
|
let return_type = match return_annotation {
|
|
Some(ann) => Some(self.type_from_annotation(ann)?),
|
|
None => None,
|
|
};
|
|
|
|
self.infer_fn_with_known_types(arguments, body, return_type)
|
|
}
|
|
|
|
fn get_field_map(
|
|
&mut self,
|
|
constructor: &TypedExpr,
|
|
location: Span,
|
|
) -> Result<Option<&FieldMap>, Error> {
|
|
let (module, name) = match constructor {
|
|
TypedExpr::ModuleSelect {
|
|
module_alias,
|
|
label,
|
|
..
|
|
} => (Some(module_alias), label),
|
|
|
|
TypedExpr::Var { name, .. } => (None, name),
|
|
|
|
_ => return Ok(None),
|
|
};
|
|
|
|
Ok(self
|
|
.environment
|
|
.get_value_constructor(module, name, location)?
|
|
.field_map())
|
|
}
|
|
|
|
fn assert_assignment(&self, expr: &UntypedExpr) -> Result<(), Error> {
|
|
if !matches!(*expr, UntypedExpr::Assignment { .. }) {
|
|
return Err(Error::ImplicitlyDiscardedExpression {
|
|
location: expr.location(),
|
|
});
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
#[allow(clippy::only_used_in_recursion)]
|
|
fn assert_no_assignment(&self, expr: &UntypedExpr) -> Result<(), Error> {
|
|
match expr {
|
|
UntypedExpr::Assignment { value, .. } => Err(Error::LastExpressionIsAssignment {
|
|
location: expr.location(),
|
|
expr: *value.clone(),
|
|
}),
|
|
UntypedExpr::Trace { then, .. } => self.assert_no_assignment(then),
|
|
UntypedExpr::Fn { .. }
|
|
| UntypedExpr::BinOp { .. }
|
|
| UntypedExpr::ByteArray { .. }
|
|
| UntypedExpr::Call { .. }
|
|
| UntypedExpr::ErrorTerm { .. }
|
|
| UntypedExpr::FieldAccess { .. }
|
|
| UntypedExpr::If { .. }
|
|
| UntypedExpr::Int { .. }
|
|
| UntypedExpr::List { .. }
|
|
| UntypedExpr::PipeLine { .. }
|
|
| UntypedExpr::RecordUpdate { .. }
|
|
| UntypedExpr::Sequence { .. }
|
|
| UntypedExpr::String { .. }
|
|
| UntypedExpr::Tuple { .. }
|
|
| UntypedExpr::TupleIndex { .. }
|
|
| UntypedExpr::UnOp { .. }
|
|
| UntypedExpr::Var { .. }
|
|
| UntypedExpr::TraceIfFalse { .. }
|
|
| UntypedExpr::When { .. } => Ok(()),
|
|
}
|
|
}
|
|
|
|
pub fn in_new_scope<T>(&mut self, process_scope: impl FnOnce(&mut Self) -> T) -> T {
|
|
// Create new scope
|
|
let environment_reset_data = self.environment.open_new_scope();
|
|
let hydrator_reset_data = self.hydrator.open_new_scope();
|
|
|
|
// Process the scope
|
|
let result = process_scope(self);
|
|
|
|
// Close scope, discarding any scope local state
|
|
self.environment.close_scope(environment_reset_data);
|
|
self.hydrator.close_scope(hydrator_reset_data);
|
|
|
|
result
|
|
}
|
|
|
|
/// Crawl the AST, annotating each node with the inferred type or
|
|
/// returning an error.
|
|
pub fn infer(&mut self, expr: UntypedExpr) -> Result<TypedExpr, Error> {
|
|
match expr {
|
|
UntypedExpr::ErrorTerm { location } => Ok(self.infer_error_term(location)),
|
|
|
|
UntypedExpr::Var { location, name, .. } => self.infer_var(name, location),
|
|
|
|
UntypedExpr::Int {
|
|
location, value, ..
|
|
} => Ok(self.infer_int(value, location)),
|
|
|
|
UntypedExpr::Sequence {
|
|
expressions,
|
|
location,
|
|
} => self.infer_seq(location, expressions),
|
|
|
|
UntypedExpr::Tuple {
|
|
location, elems, ..
|
|
} => self.infer_tuple(elems, location),
|
|
|
|
UntypedExpr::String {
|
|
location, value, ..
|
|
} => Ok(self.infer_string(value, location)),
|
|
|
|
UntypedExpr::PipeLine { expressions, .. } => self.infer_pipeline(expressions),
|
|
|
|
UntypedExpr::Fn {
|
|
location,
|
|
is_capture,
|
|
arguments: args,
|
|
body,
|
|
return_annotation,
|
|
..
|
|
} => self.infer_fn(args, &[], *body, is_capture, return_annotation, location),
|
|
|
|
UntypedExpr::If {
|
|
location,
|
|
branches,
|
|
final_else,
|
|
} => self.infer_if(branches, *final_else, location),
|
|
|
|
UntypedExpr::Assignment {
|
|
location,
|
|
pattern,
|
|
value,
|
|
kind,
|
|
annotation,
|
|
..
|
|
} => self.infer_assignment(pattern, *value, kind, &annotation, location),
|
|
|
|
UntypedExpr::Trace {
|
|
location,
|
|
then,
|
|
text,
|
|
kind,
|
|
} => self.infer_trace(kind, *then, location, *text),
|
|
|
|
UntypedExpr::When {
|
|
location,
|
|
subject,
|
|
clauses,
|
|
..
|
|
} => self.infer_when(*subject, clauses, location),
|
|
|
|
UntypedExpr::List {
|
|
location,
|
|
elements,
|
|
tail,
|
|
..
|
|
} => self.infer_list(elements, tail, location),
|
|
|
|
UntypedExpr::Call {
|
|
location,
|
|
fun,
|
|
arguments: args,
|
|
..
|
|
} => self.infer_call(*fun, args, location),
|
|
|
|
UntypedExpr::BinOp {
|
|
location,
|
|
name,
|
|
left,
|
|
right,
|
|
..
|
|
} => self.infer_binop(name, *left, *right, location),
|
|
|
|
UntypedExpr::FieldAccess {
|
|
location,
|
|
label,
|
|
container,
|
|
..
|
|
} => self.infer_field_access(*container, label, location),
|
|
|
|
UntypedExpr::TupleIndex {
|
|
location,
|
|
index,
|
|
tuple,
|
|
..
|
|
} => self.infer_tuple_index(*tuple, index, location),
|
|
|
|
UntypedExpr::ByteArray {
|
|
bytes,
|
|
preferred_format,
|
|
location,
|
|
} => self.infer_bytearray(bytes, preferred_format, location),
|
|
|
|
UntypedExpr::RecordUpdate {
|
|
location,
|
|
constructor,
|
|
spread,
|
|
arguments: args,
|
|
} => self.infer_record_update(*constructor, spread, args, location),
|
|
|
|
UntypedExpr::UnOp {
|
|
location,
|
|
value,
|
|
op,
|
|
} => self.infer_un_op(location, value, op),
|
|
|
|
UntypedExpr::TraceIfFalse { value, location } => {
|
|
self.infer_trace_if_false(*value, location)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn infer_bytearray(
|
|
&mut self,
|
|
bytes: Vec<u8>,
|
|
preferred_format: ByteArrayFormatPreference,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
if let ByteArrayFormatPreference::Utf8String = preferred_format {
|
|
let value = String::from_utf8(bytes.clone()).unwrap();
|
|
let is_hex_string = hex::decode(&value).is_ok();
|
|
if bytes.len() >= 56 && is_hex_string {
|
|
self.environment
|
|
.warnings
|
|
.push(Warning::Utf8ByteArrayIsValidHexString { location, value });
|
|
}
|
|
}
|
|
|
|
Ok(TypedExpr::ByteArray {
|
|
location,
|
|
bytes,
|
|
tipo: byte_array(),
|
|
})
|
|
}
|
|
|
|
fn infer_trace_if_false(
|
|
&mut self,
|
|
value: UntypedExpr,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
let var_true = TypedExpr::Var {
|
|
location,
|
|
name: "True".to_string(),
|
|
constructor: ValueConstructor {
|
|
public: true,
|
|
variant: ValueConstructorVariant::Record {
|
|
name: "True".to_string(),
|
|
arity: 0,
|
|
field_map: None,
|
|
location: Span::empty(),
|
|
module: String::new(),
|
|
constructors_count: 2,
|
|
},
|
|
tipo: bool(),
|
|
},
|
|
};
|
|
|
|
let var_false = TypedExpr::Var {
|
|
location,
|
|
name: "False".to_string(),
|
|
constructor: ValueConstructor {
|
|
public: true,
|
|
variant: ValueConstructorVariant::Record {
|
|
name: "False".to_string(),
|
|
arity: 0,
|
|
field_map: None,
|
|
location: Span::empty(),
|
|
module: String::new(),
|
|
constructors_count: 2,
|
|
},
|
|
tipo: bool(),
|
|
},
|
|
};
|
|
|
|
let text = TypedExpr::String {
|
|
location,
|
|
tipo: string(),
|
|
value: format!(
|
|
"{} ? False",
|
|
format::Formatter::new().expr(&value).to_pretty_string(999)
|
|
),
|
|
};
|
|
|
|
let typed_value = self.infer(value)?;
|
|
|
|
self.unify(bool(), typed_value.tipo(), typed_value.location(), false)?;
|
|
|
|
match self.tracing {
|
|
Tracing::NoTraces => Ok(typed_value),
|
|
Tracing::KeepTraces => Ok(TypedExpr::If {
|
|
location,
|
|
branches: vec1::vec1![IfBranch {
|
|
condition: typed_value,
|
|
body: var_true,
|
|
location,
|
|
}],
|
|
final_else: Box::new(TypedExpr::Trace {
|
|
location,
|
|
tipo: bool(),
|
|
text: Box::new(text),
|
|
then: Box::new(var_false),
|
|
}),
|
|
tipo: bool(),
|
|
}),
|
|
}
|
|
}
|
|
|
|
fn infer_binop(
|
|
&mut self,
|
|
name: BinOp,
|
|
left: UntypedExpr,
|
|
right: UntypedExpr,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
let (input_type, output_type) = match &name {
|
|
BinOp::Eq | BinOp::NotEq => {
|
|
let left = self.infer(left)?;
|
|
|
|
let right = self.infer(right)?;
|
|
|
|
self.unify(left.tipo(), right.tipo(), right.location(), false)?;
|
|
|
|
return Ok(TypedExpr::BinOp {
|
|
location,
|
|
name,
|
|
tipo: bool(),
|
|
left: Box::new(left),
|
|
right: Box::new(right),
|
|
});
|
|
}
|
|
BinOp::And => (bool(), bool()),
|
|
BinOp::Or => (bool(), bool()),
|
|
BinOp::LtInt => (int(), bool()),
|
|
BinOp::LtEqInt => (int(), bool()),
|
|
BinOp::GtEqInt => (int(), bool()),
|
|
BinOp::GtInt => (int(), bool()),
|
|
BinOp::AddInt => (int(), int()),
|
|
BinOp::SubInt => (int(), int()),
|
|
BinOp::MultInt => (int(), int()),
|
|
BinOp::DivInt => (int(), int()),
|
|
BinOp::ModInt => (int(), int()),
|
|
};
|
|
|
|
let left = self.infer(left)?;
|
|
|
|
self.unify(
|
|
input_type.clone(),
|
|
left.tipo(),
|
|
left.type_defining_location(),
|
|
false,
|
|
)
|
|
.map_err(|e| e.operator_situation(name))?;
|
|
|
|
let right = self.infer(right)?;
|
|
|
|
self.unify(
|
|
input_type,
|
|
right.tipo(),
|
|
right.type_defining_location(),
|
|
false,
|
|
)
|
|
.map_err(|e| e.operator_situation(name))?;
|
|
|
|
Ok(TypedExpr::BinOp {
|
|
location,
|
|
name,
|
|
tipo: output_type,
|
|
left: Box::new(left),
|
|
right: Box::new(right),
|
|
})
|
|
}
|
|
|
|
fn infer_record_update(
|
|
&mut self,
|
|
constructor: UntypedExpr,
|
|
spread: RecordUpdateSpread,
|
|
args: Vec<UntypedRecordUpdateArg>,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
let (module, name): (Option<String>, String) = match self.infer(constructor.clone())? {
|
|
TypedExpr::ModuleSelect {
|
|
module_alias,
|
|
label,
|
|
..
|
|
} => (Some(module_alias), label),
|
|
|
|
TypedExpr::Var { name, .. } => (None, name),
|
|
|
|
constructor => {
|
|
return Err(Error::RecordUpdateInvalidConstructor {
|
|
location: constructor.location(),
|
|
});
|
|
}
|
|
};
|
|
|
|
let value_constructor = self
|
|
.environment
|
|
.get_value_constructor(module.as_ref(), &name, location)?
|
|
.clone();
|
|
|
|
// It must be a record with a field map for us to be able to update it
|
|
let (field_map, constructors_count) = match &value_constructor.variant {
|
|
ValueConstructorVariant::Record {
|
|
field_map: Some(field_map),
|
|
constructors_count,
|
|
..
|
|
} => (field_map, *constructors_count),
|
|
_ => {
|
|
return Err(Error::RecordUpdateInvalidConstructor {
|
|
location: constructor.location(),
|
|
});
|
|
}
|
|
};
|
|
|
|
// We can only update a record if it is the only variant of its type.
|
|
// If a record has multiple variants it cannot be safely updated as it
|
|
// could be one of the other variants.
|
|
if constructors_count != 1 {
|
|
return Err(Error::UpdateMultiConstructorType {
|
|
location: constructor.location(),
|
|
});
|
|
}
|
|
|
|
// The type must be a function for it to be a record constructor
|
|
let ret = match value_constructor.tipo.as_ref() {
|
|
Type::Fn { ret, .. } => ret,
|
|
_ => {
|
|
return Err(Error::RecordUpdateInvalidConstructor {
|
|
location: constructor.location(),
|
|
})
|
|
}
|
|
};
|
|
|
|
let spread = self.infer(*spread.base)?;
|
|
let return_type = self.instantiate(ret.clone(), &mut HashMap::new());
|
|
|
|
// Check that the spread variable unifies with the return type of the constructor
|
|
self.unify(return_type, spread.tipo(), spread.location(), false)?;
|
|
|
|
let mut arguments = Vec::new();
|
|
|
|
for UntypedRecordUpdateArg {
|
|
label,
|
|
value,
|
|
location,
|
|
} in args
|
|
{
|
|
let value = self.infer(value.clone())?;
|
|
let spread_field =
|
|
self.infer_known_record_access(spread.clone(), label.to_string(), location)?;
|
|
|
|
// Check that the update argument unifies with the corresponding
|
|
// field in the record contained within the spread variable. We
|
|
// need to check the spread, and not the constructor, in order
|
|
// to handle polymorphic types.
|
|
self.unify(
|
|
spread_field.tipo(),
|
|
value.tipo(),
|
|
value.location(),
|
|
spread_field.tipo().is_data(),
|
|
)?;
|
|
|
|
match field_map.fields.get(&label) {
|
|
None => {
|
|
panic!("Failed to lookup record field after successfully inferring that field",)
|
|
}
|
|
Some((p, _)) => arguments.push(TypedRecordUpdateArg {
|
|
location,
|
|
label: label.to_string(),
|
|
value,
|
|
index: *p,
|
|
}),
|
|
}
|
|
}
|
|
|
|
if arguments.is_empty() {
|
|
self.environment
|
|
.warnings
|
|
.push(Warning::NoFieldsRecordUpdate { location });
|
|
}
|
|
|
|
if arguments.len() == field_map.arity {
|
|
self.environment
|
|
.warnings
|
|
.push(Warning::AllFieldsRecordUpdate { location });
|
|
}
|
|
|
|
Ok(TypedExpr::RecordUpdate {
|
|
location,
|
|
tipo: spread.tipo(),
|
|
spread: Box::new(spread),
|
|
args: arguments,
|
|
})
|
|
}
|
|
|
|
fn infer_un_op(
|
|
&mut self,
|
|
location: Span,
|
|
value: Box<UntypedExpr>,
|
|
op: UnOp,
|
|
) -> Result<TypedExpr, Error> {
|
|
let value = self.infer(*value)?;
|
|
|
|
let tipo = match op {
|
|
UnOp::Not => bool(),
|
|
UnOp::Negate => int(),
|
|
};
|
|
|
|
self.unify(tipo.clone(), value.tipo(), value.location(), false)?;
|
|
|
|
Ok(TypedExpr::UnOp {
|
|
location,
|
|
value: Box::new(value),
|
|
op,
|
|
tipo,
|
|
})
|
|
}
|
|
|
|
fn infer_field_access(
|
|
&mut self,
|
|
container: UntypedExpr,
|
|
label: String,
|
|
access_location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
// Attempt to infer the container as a record access. If that fails, we may be shadowing the name
|
|
// of an imported module, so attempt to infer the container as a module access.
|
|
// TODO: Remove this cloning
|
|
match self.infer_record_access(container.clone(), label.clone(), access_location) {
|
|
Ok(record_access) => Ok(record_access),
|
|
|
|
Err(err) => match container {
|
|
UntypedExpr::Var { name, location, .. } => {
|
|
let module_access =
|
|
self.infer_module_access(&name, label, &location, access_location);
|
|
|
|
// If the name is in the environment, use the original error from
|
|
// inferring the record access, so that we can suggest possible
|
|
// misspellings of field names
|
|
if self.environment.scope.contains_key(&name) {
|
|
module_access.map_err(|_| err)
|
|
} else {
|
|
module_access
|
|
}
|
|
}
|
|
_ => Err(err),
|
|
},
|
|
}
|
|
}
|
|
|
|
fn infer_module_access(
|
|
&mut self,
|
|
module_alias: &str,
|
|
label: String,
|
|
module_location: &Span,
|
|
select_location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
let (module_name, constructor) = {
|
|
let (_, module) = self
|
|
.environment
|
|
.imported_modules
|
|
.get(module_alias)
|
|
.ok_or_else(|| Error::UnknownModule {
|
|
name: module_alias.to_string(),
|
|
location: *module_location,
|
|
imported_modules: self
|
|
.environment
|
|
.imported_modules
|
|
.keys()
|
|
.map(|t| t.to_string())
|
|
.collect(),
|
|
})?;
|
|
|
|
let constructor =
|
|
module
|
|
.values
|
|
.get(&label)
|
|
.ok_or_else(|| Error::UnknownModuleValue {
|
|
name: label.clone(),
|
|
location: Span {
|
|
start: module_location.end,
|
|
end: select_location.end,
|
|
},
|
|
module_name: module.name.clone(),
|
|
value_constructors: module.values.keys().map(|t| t.to_string()).collect(),
|
|
})?;
|
|
|
|
// Register this imported module as having been used, to inform
|
|
// warnings of unused imports later
|
|
self.environment.unused_modules.remove(module_alias);
|
|
|
|
(module.name.clone(), constructor.clone())
|
|
};
|
|
|
|
let tipo = self.instantiate(constructor.tipo, &mut HashMap::new());
|
|
|
|
let constructor = match &constructor.variant {
|
|
variant @ ValueConstructorVariant::ModuleFn { name, module, .. } => {
|
|
variant.to_module_value_constructor(Arc::clone(&tipo), module, name)
|
|
}
|
|
|
|
variant @ (ValueConstructorVariant::LocalVariable { .. }
|
|
| ValueConstructorVariant::ModuleConstant { .. }
|
|
| ValueConstructorVariant::Record { .. }) => {
|
|
variant.to_module_value_constructor(Arc::clone(&tipo), &module_name, &label)
|
|
}
|
|
};
|
|
|
|
Ok(TypedExpr::ModuleSelect {
|
|
label,
|
|
tipo: Arc::clone(&tipo),
|
|
location: select_location,
|
|
module_name,
|
|
module_alias: module_alias.to_string(),
|
|
constructor,
|
|
})
|
|
}
|
|
|
|
fn infer_record_access(
|
|
&mut self,
|
|
record: UntypedExpr,
|
|
label: String,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
// Infer the type of the (presumed) record
|
|
let record = self.infer(record)?;
|
|
|
|
self.infer_known_record_access(record, label, location)
|
|
}
|
|
|
|
fn infer_known_record_access(
|
|
&mut self,
|
|
record: TypedExpr,
|
|
label: String,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
let record = Box::new(record);
|
|
|
|
// If we don't yet know the type of the record then we cannot use any accessors
|
|
if record.tipo().is_unbound() {
|
|
return Err(Error::RecordAccessUnknownType {
|
|
location: record.location(),
|
|
});
|
|
}
|
|
|
|
// Error constructor helper function
|
|
let unknown_field = |fields| Error::UnknownRecordField {
|
|
situation: None,
|
|
typ: record.tipo(),
|
|
location,
|
|
label: label.clone(),
|
|
fields,
|
|
};
|
|
|
|
// Check to see if it's a Type that can have accessible fields
|
|
let accessors = match collapse_links(record.tipo()).as_ref() {
|
|
// A type in the current module which may have fields
|
|
Type::App { module, name, .. } if module == self.environment.current_module => {
|
|
self.environment.accessors.get(name)
|
|
}
|
|
|
|
// A type in another module which may have fields
|
|
Type::App { module, name, .. } => self
|
|
.environment
|
|
.importable_modules
|
|
.get(module)
|
|
.and_then(|module| module.accessors.get(name)),
|
|
|
|
_something_without_fields => return Err(unknown_field(vec![])),
|
|
}
|
|
.ok_or_else(|| unknown_field(vec![]))?;
|
|
|
|
// Find the accessor, if the type has one with the same label
|
|
let RecordAccessor { index, label, tipo } = accessors
|
|
.accessors
|
|
.get(&label)
|
|
.ok_or_else(|| {
|
|
unknown_field(accessors.accessors.keys().map(|t| t.to_string()).collect())
|
|
})?
|
|
.clone();
|
|
|
|
// Unify the record type with the accessor's stored copy of the record type.
|
|
// This ensure that the type parameters of the retrieved value have the correct
|
|
// types for this instance of the record.
|
|
let accessor_record_type = accessors.tipo.clone();
|
|
|
|
let mut type_vars = HashMap::new();
|
|
|
|
let accessor_record_type = self.instantiate(accessor_record_type, &mut type_vars);
|
|
|
|
let tipo = self.instantiate(tipo, &mut type_vars);
|
|
|
|
self.unify(
|
|
accessor_record_type,
|
|
record.tipo(),
|
|
record.location(),
|
|
false,
|
|
)?;
|
|
|
|
Ok(TypedExpr::RecordAccess {
|
|
record,
|
|
label,
|
|
index,
|
|
location,
|
|
tipo,
|
|
})
|
|
}
|
|
|
|
fn infer_param(
|
|
&mut self,
|
|
arg: UntypedArg,
|
|
expected: Option<Arc<Type>>,
|
|
) -> Result<TypedArg, Error> {
|
|
let Arg {
|
|
arg_name,
|
|
annotation,
|
|
location,
|
|
..
|
|
} = arg;
|
|
|
|
let tipo = annotation
|
|
.clone()
|
|
.map(|t| self.type_from_annotation(&t))
|
|
.unwrap_or_else(|| Ok(self.new_unbound_var()))?;
|
|
|
|
// If we know the expected type of the argument from its contextual
|
|
// usage then unify the newly constructed type with the expected type.
|
|
// We do this here because then there is more type information for the
|
|
// function being type checked, resulting in better type errors and the
|
|
// record field access syntax working.
|
|
if let Some(expected) = expected {
|
|
self.unify(expected, tipo.clone(), location, false)?;
|
|
}
|
|
|
|
Ok(Arg {
|
|
arg_name,
|
|
location,
|
|
annotation,
|
|
tipo,
|
|
})
|
|
}
|
|
|
|
fn infer_assignment(
|
|
&mut self,
|
|
untyped_pattern: UntypedPattern,
|
|
untyped_value: UntypedExpr,
|
|
kind: AssignmentKind,
|
|
annotation: &Option<Annotation>,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
let typed_value = self.infer(untyped_value.clone())?;
|
|
let mut value_typ = typed_value.tipo();
|
|
|
|
let value_is_data = value_typ.is_data();
|
|
|
|
// Check that any type annotation is accurate.
|
|
let pattern = if let Some(ann) = annotation {
|
|
let ann_typ = self
|
|
.type_from_annotation(ann)
|
|
.map(|t| self.instantiate(t, &mut HashMap::new()))?;
|
|
|
|
self.unify(
|
|
ann_typ.clone(),
|
|
value_typ.clone(),
|
|
typed_value.type_defining_location(),
|
|
(kind.is_let() && ann_typ.is_data()) || (kind.is_expect() && value_is_data),
|
|
)?;
|
|
|
|
value_typ = ann_typ.clone();
|
|
|
|
// Ensure the pattern matches the type of the value
|
|
PatternTyper::new(self.environment, &self.hydrator).unify(
|
|
untyped_pattern.clone(),
|
|
value_typ.clone(),
|
|
Some(ann_typ),
|
|
kind.is_let(),
|
|
)?
|
|
} else {
|
|
if value_is_data && !untyped_pattern.is_var() && !untyped_pattern.is_discard() {
|
|
return Err(Error::CastDataNoAnn {
|
|
location,
|
|
value: UntypedExpr::Assignment {
|
|
location,
|
|
value: untyped_value.into(),
|
|
pattern: untyped_pattern,
|
|
kind,
|
|
annotation: Some(Annotation::Constructor {
|
|
location: Span::empty(),
|
|
module: None,
|
|
name: "Type".to_string(),
|
|
arguments: vec![],
|
|
}),
|
|
},
|
|
});
|
|
}
|
|
|
|
// Ensure the pattern matches the type of the value
|
|
PatternTyper::new(self.environment, &self.hydrator).unify(
|
|
untyped_pattern.clone(),
|
|
value_typ.clone(),
|
|
None,
|
|
kind.is_let(),
|
|
)?
|
|
};
|
|
|
|
// We currently only do limited exhaustiveness checking of custom types
|
|
// at the top level of patterns.
|
|
// Do not perform exhaustiveness checking if user explicitly used `assert`.
|
|
match kind {
|
|
AssignmentKind::Let => {
|
|
if let Err(unmatched) = self.environment.check_exhaustiveness(
|
|
vec![pattern.clone()],
|
|
collapse_links(value_typ.clone()),
|
|
location,
|
|
) {
|
|
return Err(Error::NotExhaustivePatternMatch {
|
|
location,
|
|
unmatched,
|
|
is_let: true,
|
|
});
|
|
}
|
|
}
|
|
|
|
AssignmentKind::Expect => {
|
|
let is_exaustive_pattern = self
|
|
.environment
|
|
.check_exhaustiveness(
|
|
vec![pattern.clone()],
|
|
collapse_links(value_typ.clone()),
|
|
location,
|
|
)
|
|
.is_ok();
|
|
|
|
if !value_is_data && !value_typ.is_list() && is_exaustive_pattern {
|
|
self.environment
|
|
.warnings
|
|
.push(Warning::SingleConstructorExpect {
|
|
location: Span {
|
|
start: location.start,
|
|
end: location.start + kind.location_offset(),
|
|
},
|
|
pattern_location: untyped_pattern.location(),
|
|
value_location: untyped_value.location(),
|
|
sample: UntypedExpr::Assignment {
|
|
location: Span::empty(),
|
|
value: Box::new(untyped_value),
|
|
pattern: untyped_pattern,
|
|
kind: AssignmentKind::Let,
|
|
annotation: None,
|
|
},
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(TypedExpr::Assignment {
|
|
location,
|
|
tipo: value_typ,
|
|
kind,
|
|
pattern,
|
|
value: Box::new(typed_value),
|
|
})
|
|
}
|
|
|
|
fn infer_call(
|
|
&mut self,
|
|
fun: UntypedExpr,
|
|
args: Vec<CallArg<UntypedExpr>>,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
let (fun, args, tipo) = self
|
|
.do_infer_call(fun, args, location)
|
|
.map_err(|e| e.call_situation())?;
|
|
|
|
Ok(TypedExpr::Call {
|
|
location,
|
|
tipo,
|
|
args,
|
|
fun: Box::new(fun),
|
|
})
|
|
}
|
|
|
|
fn infer_call_argument(
|
|
&mut self,
|
|
value: UntypedExpr,
|
|
tipo: Arc<Type>,
|
|
) -> Result<TypedExpr, Error> {
|
|
let tipo = collapse_links(tipo);
|
|
|
|
let value = match (&*tipo, value) {
|
|
// If the argument is expected to be a function and we are passed a
|
|
// function literal with the correct number of arguments then we
|
|
// have special handling of this argument, passing in information
|
|
// about what the expected arguments are. This extra information
|
|
// when type checking the function body means that the
|
|
// `record.field` access syntax can be used, and improves error
|
|
// messages.
|
|
(
|
|
Type::Fn {
|
|
args: expected_arguments,
|
|
..
|
|
},
|
|
UntypedExpr::Fn {
|
|
arguments,
|
|
body,
|
|
return_annotation,
|
|
location,
|
|
is_capture: false,
|
|
..
|
|
},
|
|
) if expected_arguments.len() == arguments.len() => self.infer_fn(
|
|
arguments,
|
|
expected_arguments,
|
|
*body,
|
|
false,
|
|
return_annotation,
|
|
location,
|
|
),
|
|
|
|
// Otherwise just perform normal type inference.
|
|
(_, value) => self.infer(value),
|
|
}?;
|
|
|
|
self.unify(tipo.clone(), value.tipo(), value.location(), tipo.is_data())?;
|
|
|
|
Ok(value)
|
|
}
|
|
|
|
fn infer_clause(
|
|
&mut self,
|
|
clause: UntypedClause,
|
|
subject: &Type,
|
|
) -> Result<Vec<TypedClause>, Error> {
|
|
let UntypedClause {
|
|
patterns,
|
|
guard,
|
|
then,
|
|
location,
|
|
} = clause;
|
|
|
|
let (guard, then, typed_patterns) = self.in_new_scope(|scope| {
|
|
let typed_patterns = scope.infer_clause_pattern(patterns, subject, &location)?;
|
|
|
|
let guard = scope.infer_optional_clause_guard(guard)?;
|
|
|
|
let then = scope.infer(then)?;
|
|
|
|
Ok::<_, Error>((guard, then, typed_patterns))
|
|
})?;
|
|
|
|
Ok(typed_patterns
|
|
.into_iter()
|
|
.map(|pattern| TypedClause {
|
|
location,
|
|
pattern,
|
|
guard: guard.clone(),
|
|
then: then.clone(),
|
|
})
|
|
.collect())
|
|
}
|
|
|
|
fn infer_clause_guard(&mut self, guard: UntypedClauseGuard) -> Result<TypedClauseGuard, Error> {
|
|
match guard {
|
|
ClauseGuard::Var { location, name, .. } => {
|
|
let constructor = self.infer_value_constructor(&None, &name, &location)?;
|
|
|
|
// We cannot support all values in guard expressions as the BEAM does not
|
|
match &constructor.variant {
|
|
ValueConstructorVariant::LocalVariable { .. } => (),
|
|
|
|
ValueConstructorVariant::ModuleFn { .. }
|
|
| ValueConstructorVariant::Record { .. } => {
|
|
return Err(Error::NonLocalClauseGuardVariable { location, name });
|
|
}
|
|
|
|
ValueConstructorVariant::ModuleConstant { literal, .. } => {
|
|
return Ok(ClauseGuard::Constant(literal.clone()))
|
|
}
|
|
};
|
|
|
|
Ok(ClauseGuard::Var {
|
|
location,
|
|
name,
|
|
tipo: constructor.tipo,
|
|
})
|
|
}
|
|
|
|
ClauseGuard::Not {
|
|
location, value, ..
|
|
} => {
|
|
let value = self.infer_clause_guard(*value)?;
|
|
|
|
self.unify(bool(), value.tipo(), value.location(), false)?;
|
|
|
|
Ok(ClauseGuard::Not {
|
|
location,
|
|
value: Box::new(value),
|
|
})
|
|
}
|
|
|
|
ClauseGuard::And {
|
|
location,
|
|
left,
|
|
right,
|
|
..
|
|
} => {
|
|
let left = self.infer_clause_guard(*left)?;
|
|
|
|
self.unify(bool(), left.tipo(), left.location(), false)?;
|
|
|
|
let right = self.infer_clause_guard(*right)?;
|
|
|
|
self.unify(bool(), right.tipo(), right.location(), false)?;
|
|
|
|
Ok(ClauseGuard::And {
|
|
location,
|
|
left: Box::new(left),
|
|
right: Box::new(right),
|
|
})
|
|
}
|
|
|
|
ClauseGuard::Or {
|
|
location,
|
|
left,
|
|
right,
|
|
..
|
|
} => {
|
|
let left = self.infer_clause_guard(*left)?;
|
|
|
|
self.unify(bool(), left.tipo(), left.location(), false)?;
|
|
|
|
let right = self.infer_clause_guard(*right)?;
|
|
|
|
self.unify(bool(), right.tipo(), right.location(), false)?;
|
|
|
|
Ok(ClauseGuard::Or {
|
|
location,
|
|
left: Box::new(left),
|
|
right: Box::new(right),
|
|
})
|
|
}
|
|
|
|
ClauseGuard::Equals {
|
|
location,
|
|
left,
|
|
right,
|
|
..
|
|
} => {
|
|
let left = self.infer_clause_guard(*left)?;
|
|
let right = self.infer_clause_guard(*right)?;
|
|
|
|
self.unify(left.tipo(), right.tipo(), location, false)?;
|
|
|
|
Ok(ClauseGuard::Equals {
|
|
location,
|
|
left: Box::new(left),
|
|
right: Box::new(right),
|
|
})
|
|
}
|
|
|
|
ClauseGuard::NotEquals {
|
|
location,
|
|
left,
|
|
right,
|
|
..
|
|
} => {
|
|
let left = self.infer_clause_guard(*left)?;
|
|
let right = self.infer_clause_guard(*right)?;
|
|
|
|
self.unify(left.tipo(), right.tipo(), location, false)?;
|
|
|
|
Ok(ClauseGuard::NotEquals {
|
|
location,
|
|
left: Box::new(left),
|
|
right: Box::new(right),
|
|
})
|
|
}
|
|
|
|
ClauseGuard::GtInt {
|
|
location,
|
|
left,
|
|
right,
|
|
..
|
|
} => {
|
|
let left = self.infer_clause_guard(*left)?;
|
|
|
|
self.unify(int(), left.tipo(), left.location(), false)?;
|
|
|
|
let right = self.infer_clause_guard(*right)?;
|
|
|
|
self.unify(int(), right.tipo(), right.location(), false)?;
|
|
|
|
Ok(ClauseGuard::GtInt {
|
|
location,
|
|
left: Box::new(left),
|
|
right: Box::new(right),
|
|
})
|
|
}
|
|
|
|
ClauseGuard::GtEqInt {
|
|
location,
|
|
left,
|
|
right,
|
|
..
|
|
} => {
|
|
let left = self.infer_clause_guard(*left)?;
|
|
|
|
self.unify(int(), left.tipo(), left.location(), false)?;
|
|
|
|
let right = self.infer_clause_guard(*right)?;
|
|
|
|
self.unify(int(), right.tipo(), right.location(), false)?;
|
|
|
|
Ok(ClauseGuard::GtEqInt {
|
|
location,
|
|
left: Box::new(left),
|
|
right: Box::new(right),
|
|
})
|
|
}
|
|
|
|
ClauseGuard::LtInt {
|
|
location,
|
|
left,
|
|
right,
|
|
..
|
|
} => {
|
|
let left = self.infer_clause_guard(*left)?;
|
|
|
|
self.unify(int(), left.tipo(), left.location(), false)?;
|
|
|
|
let right = self.infer_clause_guard(*right)?;
|
|
|
|
self.unify(int(), right.tipo(), right.location(), false)?;
|
|
|
|
Ok(ClauseGuard::LtInt {
|
|
location,
|
|
left: Box::new(left),
|
|
right: Box::new(right),
|
|
})
|
|
}
|
|
|
|
ClauseGuard::LtEqInt {
|
|
location,
|
|
left,
|
|
right,
|
|
..
|
|
} => {
|
|
let left = self.infer_clause_guard(*left)?;
|
|
|
|
self.unify(int(), left.tipo(), left.location(), false)?;
|
|
|
|
let right = self.infer_clause_guard(*right)?;
|
|
|
|
self.unify(int(), right.tipo(), right.location(), false)?;
|
|
|
|
Ok(ClauseGuard::LtEqInt {
|
|
location,
|
|
left: Box::new(left),
|
|
right: Box::new(right),
|
|
})
|
|
}
|
|
|
|
ClauseGuard::Constant(constant) => {
|
|
self.infer_const(&None, constant).map(ClauseGuard::Constant)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn infer_clause_pattern(
|
|
&mut self,
|
|
patterns: Vec1<UntypedPattern>,
|
|
subject: &Type,
|
|
location: &Span,
|
|
) -> Result<Vec<TypedPattern>, Error> {
|
|
let mut pattern_typer = PatternTyper::new(self.environment, &self.hydrator);
|
|
|
|
let mut typed_patterns = Vec::with_capacity(patterns.len());
|
|
for (ix, pattern) in patterns.into_iter().enumerate() {
|
|
if ix == 0 {
|
|
typed_patterns.push(pattern_typer.infer_pattern(pattern, subject)?);
|
|
} else {
|
|
typed_patterns
|
|
.push(pattern_typer.infer_alternative_pattern(pattern, subject, location)?);
|
|
}
|
|
}
|
|
|
|
Ok(typed_patterns)
|
|
}
|
|
|
|
// TODO: extract the type annotation checking into a infer_module_const
|
|
// function that uses this function internally
|
|
pub fn infer_const(
|
|
&mut self,
|
|
annotation: &Option<Annotation>,
|
|
value: Constant,
|
|
) -> Result<Constant, Error> {
|
|
let inferred = match value {
|
|
Constant::Int {
|
|
location, value, ..
|
|
} => Ok(Constant::Int { location, value }),
|
|
|
|
Constant::String {
|
|
location, value, ..
|
|
} => Ok(Constant::String { location, value }),
|
|
|
|
Constant::ByteArray {
|
|
location,
|
|
bytes,
|
|
preferred_format,
|
|
} => {
|
|
let _ = self.infer_bytearray(bytes.clone(), preferred_format, location)?;
|
|
Ok(Constant::ByteArray {
|
|
location,
|
|
bytes,
|
|
preferred_format,
|
|
})
|
|
}
|
|
}?;
|
|
|
|
// Check type annotation is accurate.
|
|
if let Some(ann) = annotation {
|
|
let const_ann = self.type_from_annotation(ann)?;
|
|
|
|
self.unify(
|
|
const_ann.clone(),
|
|
inferred.tipo(),
|
|
inferred.location(),
|
|
const_ann.is_data(),
|
|
)?;
|
|
};
|
|
|
|
Ok(inferred)
|
|
}
|
|
|
|
fn infer_if(
|
|
&mut self,
|
|
branches: Vec1<UntypedIfBranch>,
|
|
final_else: UntypedExpr,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
let first = branches.first();
|
|
|
|
let condition = self.infer(first.condition.clone())?;
|
|
|
|
self.unify(
|
|
bool(),
|
|
condition.tipo(),
|
|
condition.type_defining_location(),
|
|
false,
|
|
)?;
|
|
|
|
let body = self.infer(first.body.clone())?;
|
|
|
|
let tipo = body.tipo();
|
|
|
|
let mut typed_branches = Vec1::new(TypedIfBranch {
|
|
body,
|
|
condition,
|
|
location: first.location,
|
|
});
|
|
|
|
for branch in &branches[1..] {
|
|
let condition = self.infer(branch.condition.clone())?;
|
|
|
|
self.unify(
|
|
bool(),
|
|
condition.tipo(),
|
|
condition.type_defining_location(),
|
|
false,
|
|
)?;
|
|
|
|
let body = self.infer(branch.body.clone())?;
|
|
|
|
self.unify(
|
|
tipo.clone(),
|
|
body.tipo(),
|
|
body.type_defining_location(),
|
|
false,
|
|
)?;
|
|
|
|
typed_branches.push(TypedIfBranch {
|
|
body,
|
|
condition,
|
|
location: branch.location,
|
|
});
|
|
}
|
|
|
|
let typed_final_else = self.infer(final_else)?;
|
|
|
|
self.unify(
|
|
tipo.clone(),
|
|
typed_final_else.tipo(),
|
|
typed_final_else.type_defining_location(),
|
|
false,
|
|
)?;
|
|
|
|
Ok(TypedExpr::If {
|
|
location,
|
|
branches: typed_branches,
|
|
final_else: Box::new(typed_final_else),
|
|
tipo,
|
|
})
|
|
}
|
|
|
|
fn infer_fn(
|
|
&mut self,
|
|
args: Vec<UntypedArg>,
|
|
expected_args: &[Arc<Type>],
|
|
body: UntypedExpr,
|
|
is_capture: bool,
|
|
return_annotation: Option<Annotation>,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
let (args, body) = self.do_infer_fn(args, expected_args, body, &return_annotation)?;
|
|
|
|
let args_types = args.iter().map(|a| a.tipo.clone()).collect();
|
|
|
|
let tipo = function(args_types, body.tipo());
|
|
|
|
Ok(TypedExpr::Fn {
|
|
location,
|
|
tipo,
|
|
is_capture,
|
|
args,
|
|
body: Box::new(body),
|
|
return_annotation,
|
|
})
|
|
}
|
|
|
|
pub fn infer_fn_with_known_types(
|
|
&mut self,
|
|
args: Vec<TypedArg>,
|
|
body: UntypedExpr,
|
|
return_type: Option<Arc<Type>>,
|
|
) -> Result<(Vec<TypedArg>, TypedExpr), Error> {
|
|
self.assert_no_assignment(&body)?;
|
|
|
|
for arg in &args {
|
|
match &arg.arg_name {
|
|
ArgName::Named {
|
|
name,
|
|
is_validator_param,
|
|
..
|
|
} if !is_validator_param => {
|
|
self.environment.insert_variable(
|
|
name.to_string(),
|
|
ValueConstructorVariant::LocalVariable {
|
|
location: arg.location,
|
|
},
|
|
arg.tipo.clone(),
|
|
);
|
|
|
|
self.environment.init_usage(
|
|
name.to_string(),
|
|
EntityKind::Variable,
|
|
arg.location,
|
|
);
|
|
}
|
|
ArgName::Named { .. } | ArgName::Discarded { .. } => (),
|
|
};
|
|
}
|
|
|
|
let (body_rigid_names, body_infer) = (self.hydrator.rigid_names(), self.infer(body));
|
|
|
|
let body = body_infer.map_err(|e| e.with_unify_error_rigid_names(&body_rigid_names))?;
|
|
|
|
// Check that any return type is accurate.
|
|
if let Some(return_type) = return_type {
|
|
self.unify(
|
|
return_type.clone(),
|
|
body.tipo(),
|
|
body.type_defining_location(),
|
|
return_type.is_data(),
|
|
)
|
|
.map_err(|e| {
|
|
e.return_annotation_mismatch()
|
|
.with_unify_error_rigid_names(&body_rigid_names)
|
|
})?;
|
|
}
|
|
|
|
Ok((args, body))
|
|
}
|
|
|
|
fn infer_int(&mut self, value: String, location: Span) -> TypedExpr {
|
|
TypedExpr::Int {
|
|
location,
|
|
value,
|
|
tipo: int(),
|
|
}
|
|
}
|
|
|
|
fn infer_list(
|
|
&mut self,
|
|
elements: Vec<UntypedExpr>,
|
|
tail: Option<Box<UntypedExpr>>,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
let tipo = self.new_unbound_var();
|
|
|
|
let mut elems = Vec::new();
|
|
|
|
for elem in elements.into_iter() {
|
|
let element = self.infer(elem)?;
|
|
|
|
// Ensure they all have the same type
|
|
self.unify(tipo.clone(), element.tipo(), location, false)?;
|
|
|
|
elems.push(element)
|
|
}
|
|
|
|
// Type check the ..tail, if there is one
|
|
let tipo = list(tipo);
|
|
|
|
let tail = match tail {
|
|
Some(tail) => {
|
|
let tail = self.infer(*tail)?;
|
|
|
|
// Ensure the tail has the same type as the preceeding elements
|
|
self.unify(tipo.clone(), tail.tipo(), location, false)?;
|
|
|
|
Some(Box::new(tail))
|
|
}
|
|
None => None,
|
|
};
|
|
|
|
Ok(TypedExpr::List {
|
|
location,
|
|
tipo,
|
|
elements: elems,
|
|
tail,
|
|
})
|
|
}
|
|
|
|
fn infer_optional_clause_guard(
|
|
&mut self,
|
|
guard: Option<UntypedClauseGuard>,
|
|
) -> Result<Option<TypedClauseGuard>, Error> {
|
|
match guard {
|
|
// If there is no guard we do nothing
|
|
None => Ok(None),
|
|
|
|
// If there is a guard we assert that it is of type Bool
|
|
Some(guard) => {
|
|
let guard = self.infer_clause_guard(guard)?;
|
|
|
|
self.unify(bool(), guard.tipo(), guard.location(), false)?;
|
|
|
|
Ok(Some(guard))
|
|
}
|
|
}
|
|
}
|
|
|
|
fn infer_pipeline(&mut self, expressions: Vec1<UntypedExpr>) -> Result<TypedExpr, Error> {
|
|
PipeTyper::infer(self, expressions)
|
|
}
|
|
|
|
fn infer_seq(&mut self, location: Span, untyped: Vec<UntypedExpr>) -> Result<TypedExpr, Error> {
|
|
let sequence = self.in_new_scope(|scope| {
|
|
let count = untyped.len();
|
|
|
|
let mut expressions = Vec::with_capacity(count);
|
|
|
|
for (i, expression) in untyped.into_iter().enumerate() {
|
|
match i.cmp(&(count - 1)) {
|
|
// When the expression is the last in a sequence, we enforce it is NOT
|
|
// an assignment (kind of treat assignments like statements).
|
|
Ordering::Equal => scope.assert_no_assignment(&expression)?,
|
|
|
|
// This isn't the final expression in the sequence, so it *must*
|
|
// be a let-binding; we do not allow anything else.
|
|
Ordering::Less => scope.assert_assignment(&expression)?,
|
|
|
|
// Can't actually happen
|
|
Ordering::Greater => (),
|
|
}
|
|
|
|
expressions.push(scope.infer(expression)?);
|
|
}
|
|
|
|
Ok(expressions)
|
|
})?;
|
|
|
|
let unused = self
|
|
.environment
|
|
.warnings
|
|
.iter()
|
|
.filter_map(|w| match w {
|
|
Warning::UnusedVariable { location, .. } => Some(*location),
|
|
_ => None,
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
let expressions = sequence
|
|
.into_iter()
|
|
.filter(|expr| {
|
|
if let TypedExpr::Assignment { pattern, .. } = expr {
|
|
!unused.contains(&pattern.location())
|
|
} else {
|
|
true
|
|
}
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
Ok(TypedExpr::Sequence {
|
|
location,
|
|
expressions,
|
|
})
|
|
}
|
|
|
|
fn infer_string(&mut self, value: String, location: Span) -> TypedExpr {
|
|
TypedExpr::String {
|
|
location,
|
|
value,
|
|
tipo: string(),
|
|
}
|
|
}
|
|
|
|
fn infer_tuple(&mut self, elems: Vec<UntypedExpr>, location: Span) -> Result<TypedExpr, Error> {
|
|
let mut typed_elems = vec![];
|
|
|
|
for elem in elems {
|
|
let typed_elem = self.infer(elem)?;
|
|
|
|
typed_elems.push(typed_elem);
|
|
}
|
|
|
|
let tipo = tuple(typed_elems.iter().map(|e| e.tipo()).collect());
|
|
|
|
Ok(TypedExpr::Tuple {
|
|
location,
|
|
elems: typed_elems,
|
|
tipo,
|
|
})
|
|
}
|
|
|
|
fn infer_tuple_index(
|
|
&mut self,
|
|
tuple: UntypedExpr,
|
|
index: usize,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
let tuple = self.infer(tuple)?;
|
|
|
|
let tipo = match *tuple.tipo() {
|
|
Type::Tuple { ref elems, .. } => {
|
|
let size = elems.len();
|
|
if index >= size {
|
|
Err(Error::TupleIndexOutOfBound {
|
|
location,
|
|
index,
|
|
size,
|
|
})
|
|
} else {
|
|
Ok(elems[index].clone())
|
|
}
|
|
}
|
|
_ => Err(Error::NotATuple {
|
|
location,
|
|
tipo: tuple.tipo(),
|
|
}),
|
|
}?;
|
|
|
|
Ok(TypedExpr::TupleIndex {
|
|
location,
|
|
tipo,
|
|
index,
|
|
tuple: Box::new(tuple),
|
|
})
|
|
}
|
|
|
|
fn infer_error_term(&mut self, location: Span) -> TypedExpr {
|
|
let tipo = self.new_unbound_var();
|
|
|
|
TypedExpr::ErrorTerm { location, tipo }
|
|
}
|
|
|
|
fn infer_trace(
|
|
&mut self,
|
|
kind: TraceKind,
|
|
then: UntypedExpr,
|
|
location: Span,
|
|
text: UntypedExpr,
|
|
) -> Result<TypedExpr, Error> {
|
|
let text = self.infer(text)?;
|
|
self.unify(string(), text.tipo(), text.location(), false)?;
|
|
|
|
let then = self.infer(then)?;
|
|
let tipo = then.tipo();
|
|
|
|
if let TraceKind::Todo = kind {
|
|
self.environment.warnings.push(Warning::Todo {
|
|
location,
|
|
tipo: tipo.clone(),
|
|
})
|
|
}
|
|
|
|
match self.tracing {
|
|
Tracing::NoTraces => Ok(then),
|
|
Tracing::KeepTraces => Ok(TypedExpr::Trace {
|
|
location,
|
|
tipo,
|
|
then: Box::new(then),
|
|
text: Box::new(text),
|
|
}),
|
|
}
|
|
}
|
|
|
|
fn infer_value_constructor(
|
|
&mut self,
|
|
module: &Option<String>,
|
|
name: &str,
|
|
location: &Span,
|
|
) -> Result<ValueConstructor, Error> {
|
|
let constructor = match module {
|
|
// Look in the current scope for a binding with this name
|
|
None => {
|
|
let constructor =
|
|
self.environment
|
|
.get_variable(name)
|
|
.cloned()
|
|
.ok_or_else(|| Error::UnknownVariable {
|
|
location: *location,
|
|
name: name.to_string(),
|
|
variables: self.environment.local_value_names(),
|
|
})?;
|
|
|
|
// Note whether we are using an ungeneralised function so that we can
|
|
// tell if it is safe to generalise this function after inference has
|
|
// completed.
|
|
if matches!(
|
|
&constructor.variant,
|
|
ValueConstructorVariant::ModuleFn { .. }
|
|
) {
|
|
let is_ungeneralised = self.environment.ungeneralised_functions.contains(name);
|
|
|
|
self.ungeneralised_function_used =
|
|
self.ungeneralised_function_used || is_ungeneralised;
|
|
}
|
|
|
|
// Register the value as seen for detection of unused values
|
|
self.environment.increment_usage(name);
|
|
|
|
constructor
|
|
}
|
|
|
|
// Look in an imported module for a binding with this name
|
|
Some(module_name) => {
|
|
let (_, module) = &self
|
|
.environment
|
|
.imported_modules
|
|
.get(module_name)
|
|
.ok_or_else(|| Error::UnknownModule {
|
|
location: *location,
|
|
name: module_name.to_string(),
|
|
imported_modules: self
|
|
.environment
|
|
.imported_modules
|
|
.keys()
|
|
.map(|t| t.to_string())
|
|
.collect(),
|
|
})?;
|
|
|
|
module
|
|
.values
|
|
.get(name)
|
|
.cloned()
|
|
.ok_or_else(|| Error::UnknownModuleValue {
|
|
location: *location,
|
|
module_name: module_name.to_string(),
|
|
name: name.to_string(),
|
|
value_constructors: module.values.keys().map(|t| t.to_string()).collect(),
|
|
})?
|
|
}
|
|
};
|
|
|
|
let ValueConstructor {
|
|
public,
|
|
variant,
|
|
tipo,
|
|
} = constructor;
|
|
|
|
// Instantiate generic variables into unbound variables for this usage
|
|
let tipo = self.instantiate(tipo, &mut HashMap::new());
|
|
|
|
Ok(ValueConstructor {
|
|
public,
|
|
variant,
|
|
tipo,
|
|
})
|
|
}
|
|
|
|
fn infer_var(&mut self, name: String, location: Span) -> Result<TypedExpr, Error> {
|
|
let constructor = self.infer_value_constructor(&None, &name, &location)?;
|
|
|
|
Ok(TypedExpr::Var {
|
|
constructor,
|
|
location,
|
|
name,
|
|
})
|
|
}
|
|
|
|
fn infer_when(
|
|
&mut self,
|
|
subject: UntypedExpr,
|
|
clauses: Vec<UntypedClause>,
|
|
location: Span,
|
|
) -> Result<TypedExpr, Error> {
|
|
// if there is only one clause we want to present a warning
|
|
// that suggests that a `let` binding should be used instead.
|
|
if clauses.len() == 1 {
|
|
self.environment.warnings.push(Warning::SingleWhenClause {
|
|
location: clauses[0].patterns[0].location(),
|
|
sample: UntypedExpr::Assignment {
|
|
location: Span::empty(),
|
|
value: Box::new(subject.clone()),
|
|
pattern: clauses[0].patterns[0].clone(),
|
|
kind: AssignmentKind::Let,
|
|
annotation: None,
|
|
},
|
|
});
|
|
}
|
|
|
|
let typed_subject = self.infer(subject)?;
|
|
let subject_type = typed_subject.tipo();
|
|
let return_type = self.new_unbound_var();
|
|
|
|
let mut typed_clauses = Vec::new();
|
|
for clause in clauses {
|
|
for typed_clause in self.infer_clause(clause, &subject_type)? {
|
|
self.unify(
|
|
return_type.clone(),
|
|
typed_clause.then.tipo(),
|
|
typed_clause.location(),
|
|
false,
|
|
)
|
|
.map_err(|e| e.case_clause_mismatch())?;
|
|
|
|
typed_clauses.push(typed_clause)
|
|
}
|
|
}
|
|
|
|
if let Err(unmatched) =
|
|
self.check_when_exhaustiveness(&subject_type, &typed_clauses, location)
|
|
{
|
|
return Err(Error::NotExhaustivePatternMatch {
|
|
location,
|
|
unmatched,
|
|
is_let: false,
|
|
});
|
|
}
|
|
|
|
Ok(TypedExpr::When {
|
|
location,
|
|
tipo: return_type,
|
|
subject: Box::new(typed_subject),
|
|
clauses: typed_clauses,
|
|
})
|
|
}
|
|
|
|
fn instantiate(&mut self, t: Arc<Type>, ids: &mut HashMap<u64, Arc<Type>>) -> Arc<Type> {
|
|
self.environment.instantiate(t, ids, &self.hydrator)
|
|
}
|
|
|
|
pub fn new(environment: &'a mut Environment<'b>, tracing: Tracing) -> Self {
|
|
Self {
|
|
hydrator: Hydrator::new(),
|
|
environment,
|
|
tracing,
|
|
ungeneralised_function_used: false,
|
|
}
|
|
}
|
|
|
|
pub fn new_unbound_var(&mut self) -> Arc<Type> {
|
|
self.environment.new_unbound_var()
|
|
}
|
|
|
|
pub fn type_from_annotation(&mut self, annotation: &Annotation) -> Result<Arc<Type>, Error> {
|
|
self.hydrator
|
|
.type_from_annotation(annotation, self.environment)
|
|
}
|
|
|
|
fn unify(
|
|
&mut self,
|
|
t1: Arc<Type>,
|
|
t2: Arc<Type>,
|
|
location: Span,
|
|
allow_cast: bool,
|
|
) -> Result<(), Error> {
|
|
self.environment.unify(t1, t2, location, allow_cast)
|
|
}
|
|
}
|