aiken/crates/aiken-lang/src/tipo/expr.rs

2712 lines
89 KiB
Rust

use super::{
environment::{
assert_no_labeled_arguments, collapse_links, generalise, EntityKind, Environment,
},
error::{Error, Warning},
hydrator::Hydrator,
pattern::PatternTyper,
pipe::PipeTyper,
RecordAccessor, Type, ValueConstructor, ValueConstructorVariant,
};
use crate::{
ast::{
self, Annotation, ArgName, AssignmentKind, AssignmentPattern, BinOp, Bls12_381Point,
ByteArrayFormatPreference, CallArg, Constant, Curve, Function, IfBranch,
LogicalOpChainKind, Pattern, RecordUpdateSpread, Span, TraceKind, TraceLevel, Tracing,
TypedArg, TypedCallArg, TypedClause, TypedIfBranch, TypedPattern, TypedRecordUpdateArg,
UnOp, UntypedArg, UntypedAssignmentKind, UntypedClause, UntypedFunction, UntypedIfBranch,
UntypedPattern, UntypedRecordUpdateArg,
},
builtins::{
bool, byte_array, data, from_default_function, function, g1_element, g2_element, int, list,
pair, string, tuple, void, BUILTIN,
},
expr::{FnStyle, TypedExpr, UntypedExpr},
format,
tipo::{fields::FieldMap, DefaultFunction, PatternConstructor, TypeVar},
IdGenerator,
};
use std::{
cmp::Ordering,
collections::{BTreeSet, HashMap},
ops::Deref,
rc::Rc,
};
use vec1::Vec1;
pub(crate) fn infer_function(
fun: &UntypedFunction,
module_name: &str,
hydrators: &mut HashMap<String, Hydrator>,
environment: &mut Environment<'_>,
tracing: Tracing,
) -> Result<Function<Rc<Type>, TypedExpr, TypedArg>, Error> {
if let Some(typed_fun) = environment.inferred_functions.get(&fun.name) {
return Ok(typed_fun.clone());
};
let Function {
doc,
location,
name,
public,
arguments,
body,
return_annotation,
end_position,
on_test_failure,
return_type: _,
} = fun;
let mut extra_let_assignments = Vec::new();
for (i, arg) in arguments.iter().enumerate() {
let let_assignment = arg.by.clone().into_extra_assignment(
&arg.arg_name(i),
arg.annotation.as_ref(),
arg.location,
);
match let_assignment {
None => {}
Some(expr) => extra_let_assignments.push(expr),
}
}
let sequence;
let body = if extra_let_assignments.is_empty() {
body
} else if let UntypedExpr::Sequence { expressions, .. } = body {
extra_let_assignments.extend(expressions.clone());
sequence = UntypedExpr::Sequence {
expressions: extra_let_assignments,
location: *location,
};
&sequence
} else {
extra_let_assignments.extend([body.clone()]);
sequence = UntypedExpr::Sequence {
expressions: extra_let_assignments,
location: body.location(),
};
&sequence
};
let preregistered_fn = environment
.get_variable(name)
.unwrap_or_else(|| panic!("Could not find preregistered type for function: {name}"));
let field_map = preregistered_fn.field_map().cloned();
let preregistered_type = preregistered_fn.tipo.clone();
let (args_types, return_type) = preregistered_type
.function_types()
.unwrap_or_else(|| panic!("Preregistered type for fn {name} was not a fn"));
let warnings = environment.warnings.clone();
// ━━━ open new scope ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
let initial_scope = environment.open_new_scope();
let arguments = arguments
.iter()
.zip(&args_types)
.enumerate()
.map(|(ix, (arg_name, tipo))| arg_name.to_owned().set_type(tipo.clone(), ix))
.collect();
let hydrator = hydrators
.remove(name)
.unwrap_or_else(|| panic!("Could not find hydrator for fn {name}"));
let mut expr_typer = ExprTyper::new(environment, tracing);
expr_typer.hydrator = hydrator;
expr_typer.not_yet_inferred = BTreeSet::from_iter(hydrators.keys().cloned());
// Infer the type using the preregistered args + return types as a starting point
let inferred =
expr_typer.infer_fn_with_known_types(arguments, body.to_owned(), Some(return_type));
// We try to always perform a deep-first inferrence. So callee are inferred before callers,
// since this provides better -- and necessary -- information in particular with regards to
// generics.
//
// In principle, the compiler requires function definitions to be processed *in order*. So if
// A calls B, we must have inferred B before A. This is detected during inferrence, and we
// raise an error about it. Here however, we backtrack from that error and infer the caller
// first. Then, re-attempt to infer the current function. It may takes multiple attempts, but
// should eventually succeed.
//
// Note that we need to close the scope before backtracking to not mess with the scope of the
// callee. Otherwise, identifiers present in the caller's scope may become available to the
// callee.
if let Err(Error::MustInferFirst { function, .. }) = inferred {
// Reset the environment & scope.
hydrators.insert(name.to_string(), expr_typer.hydrator);
environment.close_scope(initial_scope);
*environment.warnings = warnings;
// Backtrack and infer callee first.
infer_function(
&function,
environment.current_module,
hydrators,
environment,
tracing,
)?;
// Then, try again the entire function definition.
return infer_function(fun, module_name, hydrators, environment, tracing);
}
let (arguments, body, return_type) = inferred?;
let args_types = arguments.iter().map(|a| a.tipo.clone()).collect();
let tipo = function(args_types, return_type);
let safe_to_generalise = !expr_typer.ungeneralised_function_used;
environment.close_scope(initial_scope);
// ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
// Assert that the inferred type matches the type of any recursive call
environment.unify(preregistered_type, tipo.clone(), *location, false)?;
// Generalise the function if safe to do so
let tipo = if safe_to_generalise {
environment.ungeneralised_functions.remove(name);
let tipo = generalise(tipo, 0);
let module_fn = ValueConstructorVariant::ModuleFn {
name: name.clone(),
field_map,
module: module_name.to_owned(),
arity: arguments.len(),
location: *location,
builtin: None,
};
environment.insert_variable(name.clone(), module_fn, tipo.clone());
tipo
} else {
tipo
};
let inferred_fn = Function {
doc: doc.clone(),
location: *location,
name: name.clone(),
public: *public,
arguments,
return_annotation: return_annotation.clone(),
return_type: tipo
.return_type()
.expect("Could not find return type for fn"),
body,
on_test_failure: on_test_failure.clone(),
end_position: *end_position,
};
environment
.inferred_functions
.insert(name.to_string(), inferred_fn.clone());
Ok(inferred_fn)
}
#[derive(Debug)]
pub(crate) struct ExprTyper<'a, 'b> {
pub(crate) environment: &'a mut Environment<'b>,
// We tweak the tracing behavior during type-check. Traces are either kept or left out of the
// typed AST depending on this setting.
pub(crate) tracing: Tracing,
// Type hydrator for creating types from annotations
pub(crate) hydrator: Hydrator,
// A static set of remaining function names that are known but not yet inferred
pub(crate) not_yet_inferred: BTreeSet<String>,
// We keep track of whether any ungeneralised functions have been used
// to determine whether it is safe to generalise this expression after
// it has been inferred.
pub(crate) ungeneralised_function_used: bool,
}
impl<'a, 'b> ExprTyper<'a, 'b> {
pub fn new(environment: &'a mut Environment<'b>, tracing: Tracing) -> Self {
Self {
hydrator: Hydrator::new(),
not_yet_inferred: BTreeSet::new(),
environment,
tracing,
ungeneralised_function_used: false,
}
}
fn check_when_exhaustiveness(
&mut self,
typed_clauses: &[TypedClause],
location: Span,
) -> Result<(), Error> {
// Currently guards in exhaustiveness checking are assumed that they can fail,
// so we go through all clauses and pluck out only the patterns
// for clauses that don't have guards.
let mut patterns = Vec::new();
for clause in typed_clauses {
patterns.push(&clause.pattern);
}
self.environment
.check_exhaustiveness(&patterns, location, false)?;
Ok(())
}
pub fn do_infer_call(
&mut self,
fun: UntypedExpr,
args: Vec<CallArg<UntypedExpr>>,
location: Span,
) -> Result<(TypedExpr, Vec<TypedCallArg>, Rc<Type>), Error> {
let fun = self.infer(fun)?;
let (fun, args, typ) = self.do_infer_call_with_known_fun(fun, args, location, |e| e)?;
Ok((fun, args, typ))
}
pub fn do_infer_call_with_known_fun<F>(
&mut self,
fun: TypedExpr,
mut args: Vec<CallArg<UntypedExpr>>,
location: Span,
map_err: F,
) -> Result<(TypedExpr, Vec<TypedCallArg>, Rc<Type>), Error>
where
F: Copy + FnOnce(Error) -> Error,
{
// Check to see if the function accepts labelled arguments
match self.get_field_map(&fun, location)? {
// The fun has a field map so labelled arguments may be present and need to be reordered.
Some(field_map) => field_map.reorder(&mut args, location)?,
// The fun has no field map and so we error if arguments have been labelled
None => assert_no_labeled_arguments(&args)
.map(|(location, label)| Err(Error::UnexpectedLabeledArg { location, label }))
.unwrap_or(Ok(()))?,
}
// Extract the type of the fun, ensuring it actually is a function
let (mut args_types, return_type) =
self.environment
.match_fun_type(fun.tipo(), args.len(), fun.location(), location)?;
let mut arguments = Vec::new();
for (index, (tipo, arg)) in args_types.iter_mut().zip(args).enumerate() {
let CallArg {
label,
value,
location,
} = arg;
let value = self.infer_call_argument(value, tipo.clone());
// This is so that we can annotate the error properly
// with the pipe type mismatch situation when this is called from
// `infer_pipeline`
let value = if index == 0 {
value.map_err(map_err)?
} else {
value?
};
arguments.push(CallArg {
label,
value,
location,
});
}
Ok((fun, arguments, return_type))
}
pub fn do_infer_fn(
&mut self,
args: Vec<UntypedArg>,
expected_args: &[Rc<Type>],
body: UntypedExpr,
return_annotation: &Option<Annotation>,
) -> Result<(Vec<TypedArg>, TypedExpr, Rc<Type>), Error> {
// Construct an initial type for each argument of the function- either an unbound
// type variable or a type provided by an annotation.
let mut arguments = Vec::new();
let mut extra_let_assignments = Vec::new();
for (i, arg) in args.into_iter().enumerate() {
let (arg, extra_let_assignment) =
self.infer_param(arg, expected_args.get(i).cloned(), i)?;
if let Some(expr) = extra_let_assignment {
extra_let_assignments.push(expr);
}
arguments.push(arg);
}
let return_type = match return_annotation {
Some(ann) => Some(self.type_from_annotation(ann)?),
None => None,
};
let body_location = body.location();
let body = if extra_let_assignments.is_empty() {
body
} else if let UntypedExpr::Sequence {
location,
expressions,
} = body
{
extra_let_assignments.extend(expressions);
UntypedExpr::Sequence {
expressions: extra_let_assignments,
location,
}
} else {
extra_let_assignments.extend([body]);
UntypedExpr::Sequence {
expressions: extra_let_assignments,
location: body_location,
}
};
self.infer_fn_with_known_types(arguments, body, return_type)
}
fn get_field_map(
&mut self,
constructor: &TypedExpr,
location: Span,
) -> Result<Option<&FieldMap>, Error> {
let (module, name) = match constructor {
TypedExpr::ModuleSelect {
module_alias,
label,
..
} => (Some(module_alias), label),
TypedExpr::Var { name, .. } => (None, name),
_ => return Ok(None),
};
Ok(self
.environment
.get_value_constructor(module, name, location)?
.field_map())
}
pub fn in_new_scope<T>(&mut self, process_scope: impl FnOnce(&mut Self) -> T) -> T {
// Create new scope
let environment_reset_data = self.environment.open_new_scope();
let hydrator_reset_data = self.hydrator.open_new_scope();
// Process the scope
let result = process_scope(self);
// Close scope, discarding any scope local state
self.environment.close_scope(environment_reset_data);
self.hydrator.close_scope(hydrator_reset_data);
result
}
/// Crawl the AST, annotating each node with the inferred type or
/// returning an error.
pub fn infer(&mut self, expr: UntypedExpr) -> Result<TypedExpr, Error> {
match expr {
UntypedExpr::ErrorTerm { location } => Ok(self.infer_error_term(location)),
UntypedExpr::Var { location, name } => self.infer_var(name, location),
UntypedExpr::UInt {
location,
value,
base: _,
} => Ok(self.infer_uint(value, location)),
UntypedExpr::Sequence {
expressions,
location,
} => self.infer_seq(location, expressions),
UntypedExpr::Tuple { location, elems } => self.infer_tuple(elems, location),
UntypedExpr::Pair { location, fst, snd } => self.infer_pair(*fst, *snd, location),
UntypedExpr::String { location, value } => Ok(self.infer_string(value, location)),
UntypedExpr::LogicalOpChain {
kind,
expressions,
location,
} => self.infer_logical_op_chain(kind, expressions, location),
UntypedExpr::PipeLine { expressions, .. } => self.infer_pipeline(expressions),
UntypedExpr::Fn {
location,
fn_style,
arguments: args,
body,
return_annotation,
} => self.infer_fn(
args,
&[],
*body,
fn_style == FnStyle::Capture,
return_annotation,
location,
),
UntypedExpr::If {
location,
branches,
final_else,
} => self.infer_if(branches, *final_else, location),
UntypedExpr::Assignment {
location,
patterns,
value,
kind,
} => {
// at this point due to backpassing rewrites,
// patterns is guaranteed to have one item
let AssignmentPattern {
pattern,
annotation,
location: _,
} = patterns.into_vec().swap_remove(0);
self.infer_assignment(pattern, *value, kind, &annotation, location)
}
UntypedExpr::Trace {
location,
then,
label,
arguments,
kind,
..
} => self.infer_trace(kind, *then, location, *label, arguments),
UntypedExpr::When {
location,
subject,
clauses,
..
} => self.infer_when(*subject, clauses, location),
UntypedExpr::List {
location,
elements,
tail,
} => self.infer_list(elements, tail, location),
UntypedExpr::Call {
location,
fun,
arguments: args,
} => self.infer_call(*fun, args, location),
UntypedExpr::BinOp {
location,
name,
left,
right,
} => self.infer_binop(name, *left, *right, location),
UntypedExpr::FieldAccess {
location,
label,
container,
} => self.infer_field_access(*container, label, location),
UntypedExpr::TupleIndex {
location,
index,
tuple,
} => self.infer_tuple_index(*tuple, index, location),
UntypedExpr::ByteArray {
bytes,
preferred_format,
location,
} => self.infer_bytearray(bytes, preferred_format, location),
UntypedExpr::CurvePoint {
location,
point,
preferred_format: _,
} => self.infer_curve_point(*point, location),
UntypedExpr::RecordUpdate {
location,
constructor,
spread,
arguments: args,
} => self.infer_record_update(*constructor, spread, args, location),
UntypedExpr::UnOp {
location,
value,
op,
} => self.infer_un_op(location, *value, op),
UntypedExpr::TraceIfFalse { value, location } => {
self.infer_trace_if_false(*value, location)
}
}
}
fn infer_bytearray(
&mut self,
bytes: Vec<u8>,
preferred_format: ByteArrayFormatPreference,
location: Span,
) -> Result<TypedExpr, Error> {
if let ByteArrayFormatPreference::Utf8String = preferred_format {
let value = String::from_utf8(bytes.clone()).unwrap();
let is_hex_string = hex::decode(&value).is_ok();
if bytes.len() >= 56 && is_hex_string {
self.environment
.warnings
.push(Warning::Utf8ByteArrayIsValidHexString { location, value });
}
}
Ok(TypedExpr::ByteArray {
location,
bytes,
tipo: byte_array(),
})
}
fn infer_curve_point(&mut self, curve: Curve, location: Span) -> Result<TypedExpr, Error> {
let tipo = match curve {
Curve::Bls12_381(point) => match point {
Bls12_381Point::G1(_) => g1_element(),
Bls12_381Point::G2(_) => g2_element(),
},
};
Ok(TypedExpr::CurvePoint {
location,
point: curve.into(),
tipo,
})
}
fn infer_trace_if_false(
&mut self,
value: UntypedExpr,
location: Span,
) -> Result<TypedExpr, Error> {
let var_true = TypedExpr::Var {
location,
name: "True".to_string(),
constructor: ValueConstructor {
public: true,
variant: ValueConstructorVariant::Record {
name: "True".to_string(),
arity: 0,
field_map: None,
location: Span::empty(),
module: String::new(),
constructors_count: 2,
},
tipo: bool(),
},
};
let var_false = TypedExpr::Var {
location,
name: "False".to_string(),
constructor: ValueConstructor {
public: true,
variant: ValueConstructorVariant::Record {
name: "False".to_string(),
arity: 0,
field_map: None,
location: Span::empty(),
module: String::new(),
constructors_count: 2,
},
tipo: bool(),
},
};
let text = match self.tracing.trace_level(false) {
TraceLevel::Verbose => Some(TypedExpr::String {
location,
tipo: string(),
value: format!(
"{} ? False",
format::Formatter::new()
.expr(&value, false)
.to_pretty_string(999)
),
}),
TraceLevel::Compact | TraceLevel::Silent => None,
};
let typed_value = self.infer(value)?;
self.unify(bool(), typed_value.tipo(), typed_value.location(), false)?;
match text {
None => Ok(typed_value),
Some(text) => Ok(TypedExpr::If {
location,
branches: vec1::vec1![IfBranch {
condition: typed_value,
body: var_true,
is: None,
location,
}],
final_else: Box::new(TypedExpr::Trace {
location,
tipo: bool(),
text: Box::new(text),
then: Box::new(var_false),
}),
tipo: bool(),
}),
}
}
fn infer_binop(
&mut self,
name: BinOp,
left: UntypedExpr,
right: UntypedExpr,
location: Span,
) -> Result<TypedExpr, Error> {
let (input_type, output_type) = match &name {
BinOp::Eq | BinOp::NotEq => {
let left = self.infer(left)?;
let right = self.infer(right)?;
self.unify(left.tipo(), right.tipo(), right.location(), false)?;
for tipo in &[left.tipo(), right.tipo()] {
ensure_serialisable(false, tipo.clone(), location)
.map_err(|_| Error::IllegalComparison { location })?;
}
return Ok(TypedExpr::BinOp {
location,
name,
tipo: bool(),
left: Box::new(left),
right: Box::new(right),
});
}
BinOp::And => (bool(), bool()),
BinOp::Or => (bool(), bool()),
BinOp::LtInt => (int(), bool()),
BinOp::LtEqInt => (int(), bool()),
BinOp::GtEqInt => (int(), bool()),
BinOp::GtInt => (int(), bool()),
BinOp::AddInt => (int(), int()),
BinOp::SubInt => (int(), int()),
BinOp::MultInt => (int(), int()),
BinOp::DivInt => (int(), int()),
BinOp::ModInt => (int(), int()),
};
let left = self.infer(left)?;
self.unify(
input_type.clone(),
left.tipo(),
left.type_defining_location(),
false,
)
.map_err(|e| e.operator_situation(name))?;
let right = self.infer(right)?;
self.unify(
input_type,
right.tipo(),
right.type_defining_location(),
false,
)
.map_err(|e| e.operator_situation(name))?;
Ok(TypedExpr::BinOp {
location,
name,
tipo: output_type,
left: Box::new(left),
right: Box::new(right),
})
}
fn infer_record_update(
&mut self,
constructor: UntypedExpr,
spread: RecordUpdateSpread,
args: Vec<UntypedRecordUpdateArg>,
location: Span,
) -> Result<TypedExpr, Error> {
let (module, name): (Option<String>, String) = match self.infer(constructor.clone())? {
TypedExpr::ModuleSelect {
module_alias,
label,
..
} => (Some(module_alias), label),
TypedExpr::Var { name, .. } => (None, name),
constructor => {
return Err(Error::RecordUpdateInvalidConstructor {
location: constructor.location(),
});
}
};
let value_constructor = self
.environment
.get_value_constructor(module.as_ref(), &name, location)?
.clone();
// It must be a record with a field map for us to be able to update it
let (field_map, constructors_count) = match &value_constructor.variant {
ValueConstructorVariant::Record {
field_map: Some(field_map),
constructors_count,
name: _,
arity: _,
location: _,
module: _,
} => (field_map, *constructors_count),
_ => {
return Err(Error::RecordUpdateInvalidConstructor {
location: constructor.location(),
});
}
};
// We can only update a record if it is the only variant of its type.
// If a record has multiple variants it cannot be safely updated as it
// could be one of the other variants.
if constructors_count != 1 {
return Err(Error::UpdateMultiConstructorType {
location: constructor.location(),
});
}
// The type must be a function for it to be a record constructor
let ret = match value_constructor.tipo.as_ref() {
Type::Fn { ret, .. } => ret,
_ => {
return Err(Error::RecordUpdateInvalidConstructor {
location: constructor.location(),
});
}
};
let spread = self.infer(*spread.base)?;
let return_type = self.instantiate(ret.clone(), &mut HashMap::new(), location)?;
// Check that the spread variable unifies with the return type of the constructor
self.unify(return_type, spread.tipo(), spread.location(), false)?;
let mut arguments = Vec::new();
for UntypedRecordUpdateArg {
label,
value,
location,
} in args
{
let value = self.infer(value.clone())?;
let spread_field =
self.infer_known_record_access(spread.clone(), label.to_string(), location)?;
// Check that the update argument unifies with the corresponding
// field in the record contained within the spread variable. We
// need to check the spread, and not the constructor, in order
// to handle polymorphic types.
self.unify(
spread_field.tipo(),
value.tipo(),
value.location(),
spread_field.tipo().is_data(),
)?;
match field_map.fields.get(&label) {
None => {
panic!("Failed to lookup record field after successfully inferring that field",)
}
Some((p, _)) => arguments.push(TypedRecordUpdateArg {
location,
label: label.to_string(),
value,
index: *p,
}),
}
}
if arguments.is_empty() {
self.environment
.warnings
.push(Warning::NoFieldsRecordUpdate { location });
}
if arguments.len() == field_map.arity {
self.environment
.warnings
.push(Warning::AllFieldsRecordUpdate { location });
}
Ok(TypedExpr::RecordUpdate {
location,
tipo: spread.tipo(),
spread: Box::new(spread),
args: arguments,
})
}
fn infer_un_op(
&mut self,
location: Span,
value: UntypedExpr,
op: UnOp,
) -> Result<TypedExpr, Error> {
let value = self.infer(value)?;
let tipo = match op {
UnOp::Not => bool(),
UnOp::Negate => int(),
};
self.unify(tipo.clone(), value.tipo(), value.location(), false)?;
Ok(TypedExpr::UnOp {
location,
value: Box::new(value),
op,
tipo,
})
}
fn infer_field_access(
&mut self,
container: UntypedExpr,
label: String,
access_location: Span,
) -> Result<TypedExpr, Error> {
// Attempt to infer the container as a record access. If that fails, we may be shadowing the name
// of an imported module, so attempt to infer the container as a module access.
// TODO: Remove this cloning
match self.infer_record_access(container.clone(), label.clone(), access_location) {
Ok(record_access) => Ok(record_access),
Err(err) => match container {
UntypedExpr::Var { name, location } => {
let module_access =
self.infer_module_access(&name, label, &location, access_location);
// If the name is in the environment, use the original error from
// inferring the record access, so that we can suggest possible
// misspellings of field names
if self.environment.scope.contains_key(&name) {
module_access.map_err(|_| err)
} else {
module_access
}
}
_ => Err(err),
},
}
}
fn infer_module_access(
&mut self,
module_alias: &str,
label: String,
module_location: &Span,
select_location: Span,
) -> Result<TypedExpr, Error> {
let (module_name, constructor) = {
let (_, module) = self
.environment
.imported_modules
.get(module_alias)
.ok_or_else(|| Error::UnknownModule {
name: module_alias.to_string(),
location: *module_location,
known_modules: self
.environment
.importable_modules
.keys()
.map(|t| t.to_string())
.collect(),
})?;
let constructor =
module
.values
.get(&label)
.ok_or_else(|| Error::UnknownModuleValue {
name: label.clone(),
location: Span {
start: module_location.end,
end: select_location.end,
},
module_name: module.name.clone(),
value_constructors: module.values.keys().map(|t| t.to_string()).collect(),
})?;
// Register this imported module as having been used, to inform
// warnings of unused imports later
self.environment.unused_modules.remove(module_alias);
(module.name.clone(), constructor.clone())
};
let tipo = self.instantiate(constructor.tipo, &mut HashMap::new(), select_location)?;
let constructor = match &constructor.variant {
variant @ ValueConstructorVariant::ModuleFn { name, module, .. } => {
variant.to_module_value_constructor(Rc::clone(&tipo), module, name)
}
variant @ (ValueConstructorVariant::LocalVariable { .. }
| ValueConstructorVariant::ModuleConstant { .. }
| ValueConstructorVariant::Record { .. }) => {
variant.to_module_value_constructor(Rc::clone(&tipo), &module_name, &label)
}
};
Ok(TypedExpr::ModuleSelect {
label,
tipo: Rc::clone(&tipo),
location: select_location,
module_name,
module_alias: module_alias.to_string(),
constructor,
})
}
fn infer_record_access(
&mut self,
record: UntypedExpr,
label: String,
location: Span,
) -> Result<TypedExpr, Error> {
// Infer the type of the (presumed) record
let record = self.infer(record)?;
self.infer_known_record_access(record, label, location)
}
fn infer_known_record_access(
&mut self,
record: TypedExpr,
label: String,
location: Span,
) -> Result<TypedExpr, Error> {
let record = Box::new(record);
// If we don't yet know the type of the record then we cannot use any accessors
if record.tipo().is_unbound() {
return Err(Error::RecordAccessUnknownType {
location: record.location(),
});
}
// Error constructor helper function
let unknown_field = |fields| Error::UnknownRecordField {
situation: None,
typ: record.tipo(),
location,
label: label.clone(),
fields,
};
// Check to see if it's a Type that can have accessible fields
let accessors = match collapse_links(record.tipo()).as_ref() {
// A type in the current module which may have fields
Type::App { module, name, .. } if module == self.environment.current_module => {
self.environment.accessors.get(name)
}
// A type in another module which may have fields
Type::App { module, name, .. } => self
.environment
.importable_modules
.get(module)
.and_then(|module| module.accessors.get(name)),
Type::Pair { .. } => self.environment.accessors.get("Pair"),
_something_without_fields => {
return Err(unknown_field(vec![]));
}
}
.ok_or_else(|| unknown_field(vec![]))?;
// Find the accessor, if the type has one with the same label
let RecordAccessor { index, label, tipo } = accessors
.accessors
.get(&label)
.ok_or_else(|| {
unknown_field(accessors.accessors.keys().map(|t| t.to_string()).collect())
})?
.clone();
// Unify the record type with the accessor's stored copy of the record type.
// This ensure that the type parameters of the retrieved value have the correct
// types for this instance of the record.
let accessor_record_type = accessors.tipo.clone();
let mut type_vars = HashMap::new();
let accessor_record_type =
self.instantiate(accessor_record_type, &mut type_vars, record.location())?;
let tipo = self.instantiate(tipo, &mut type_vars, record.location())?;
self.unify(
accessor_record_type,
record.tipo(),
record.location(),
false,
)?;
if let Type::App { name, .. } = record.tipo().as_ref() {
self.environment.increment_usage(name);
};
Ok(TypedExpr::RecordAccess {
record,
label,
index,
location,
tipo,
})
}
fn infer_param(
&mut self,
untyped_arg: UntypedArg,
expected: Option<Rc<Type>>,
ix: usize,
) -> Result<(TypedArg, Option<UntypedExpr>), Error> {
let arg_name = untyped_arg.arg_name(ix);
let UntypedArg {
by,
annotation,
location,
doc,
is_validator_param,
} = untyped_arg;
let tipo = annotation
.clone()
.map(|t| self.type_from_annotation(&t))
.unwrap_or_else(|| Ok(self.new_unbound_var()))?;
// If we know the expected type of the argument from its contextual
// usage then unify the newly constructed type with the expected type.
// We do this here because then there is more type information for the
// function being type checked, resulting in better type errors and the
// record field access syntax working.
if let Some(expected) = expected {
self.unify(expected, tipo.clone(), location, false)?;
}
let extra_assignment = by.into_extra_assignment(&arg_name, annotation.as_ref(), location);
let typed_arg = TypedArg {
arg_name,
location,
annotation,
tipo,
is_validator_param,
doc,
};
Ok((typed_arg, extra_assignment))
}
fn infer_assignment(
&mut self,
untyped_pattern: UntypedPattern,
untyped_value: UntypedExpr,
kind: UntypedAssignmentKind,
annotation: &Option<Annotation>,
location: Span,
) -> Result<TypedExpr, Error> {
let typed_value = self.infer(untyped_value.clone())?;
let mut value_typ = typed_value.tipo();
let value_is_data = value_typ.is_data();
// Check that any type annotation is accurate.
let pattern = if let Some(ann) = annotation {
let ann_typ = self
.type_from_annotation(ann)
.and_then(|t| self.instantiate(t, &mut HashMap::new(), location))?;
self.unify(
ann_typ.clone(),
value_typ.clone(),
typed_value.type_defining_location(),
(kind.is_let() && ann_typ.is_data()) || kind.is_expect() || kind.if_is(),
)?;
value_typ = ann_typ.clone();
// Ensure the pattern matches the type of the value
PatternTyper::new(self.environment, &self.hydrator).unify(
untyped_pattern.clone(),
value_typ.clone(),
Some(ann_typ),
kind.is_let(),
)
} else if value_is_data && !kind.is_let() {
let cast_data_no_ann = || {
let ann = Annotation::Constructor {
location: Span::empty(),
module: None,
name: "Type".to_string(),
arguments: vec![],
};
Err(Error::CastDataNoAnn {
location,
value: UntypedExpr::Assignment {
location,
value: untyped_value.clone().into(),
patterns: AssignmentPattern::new(
untyped_pattern.clone(),
Some(ann),
Span::empty(),
)
.into(),
kind,
},
})
};
if !untyped_pattern.is_var() && !untyped_pattern.is_discard() {
let ann_typ = self.new_unbound_var();
match PatternTyper::new(self.environment, &self.hydrator).unify(
untyped_pattern.clone(),
ann_typ.clone(),
None,
false,
) {
Ok(pattern) if ann_typ.is_monomorphic() => {
self.unify(
ann_typ.clone(),
value_typ.clone(),
typed_value.type_defining_location(),
true,
)?;
value_typ = ann_typ.clone();
Ok(pattern)
}
Ok(..) | Err(..) => cast_data_no_ann(),
}
} else {
cast_data_no_ann()
}
} else {
// Ensure the pattern matches the type of the value
PatternTyper::new(self.environment, &self.hydrator).unify(
untyped_pattern.clone(),
value_typ.clone(),
None,
kind.is_let(),
)
}?;
// If `expect` is explicitly used, we still check exhaustiveness but instead of returning an
// error we emit a warning which explains that using `expect` is unnecessary.
match kind {
AssignmentKind::Is => (),
AssignmentKind::Let { .. } => {
self.environment
.check_exhaustiveness(&[&pattern], location, true)?
}
AssignmentKind::Expect { .. } => {
let is_exaustive_pattern = self
.environment
.check_exhaustiveness(&[&pattern], location, false)
.is_ok();
if !value_is_data && is_exaustive_pattern && !pattern.is_discard() {
self.environment
.warnings
.push(Warning::SingleConstructorExpect {
location: Span {
start: location.start,
end: location.start + kind.location_offset(),
},
pattern_location: untyped_pattern.location(),
value_location: untyped_value.location(),
sample: match untyped_value {
UntypedExpr::Var { name, .. } if name == ast::BACKPASS_VARIABLE => {
UntypedExpr::Assignment {
location: Span::empty(),
value: Box::new(UntypedExpr::Var {
name: "...".to_string(),
location: Span::empty(),
}),
patterns: AssignmentPattern::new(
untyped_pattern,
None,
Span::empty(),
)
.into(),
kind: AssignmentKind::Let { backpassing: true },
}
}
_ => UntypedExpr::Assignment {
location: Span::empty(),
value: Box::new(untyped_value),
patterns: AssignmentPattern::new(
untyped_pattern,
None,
Span::empty(),
)
.into(),
kind: AssignmentKind::let_(),
},
},
});
}
}
}
Ok(TypedExpr::Assignment {
location,
tipo: value_typ,
kind: kind.into(),
pattern,
value: Box::new(typed_value),
})
}
fn infer_call(
&mut self,
fun: UntypedExpr,
args: Vec<CallArg<UntypedExpr>>,
location: Span,
) -> Result<TypedExpr, Error> {
let (fun, args, tipo) = self
.do_infer_call(fun, args, location)
.map_err(|e| e.call_situation())?;
Ok(TypedExpr::Call {
location,
tipo,
args,
fun: Box::new(fun),
})
}
fn infer_call_argument(
&mut self,
value: UntypedExpr,
tipo: Rc<Type>,
) -> Result<TypedExpr, Error> {
let tipo = collapse_links(tipo);
let value = match (&*tipo, value) {
// If the argument is expected to be a function and we are passed a
// function literal with the correct number of arguments then we
// have special handling of this argument, passing in information
// about what the expected arguments are. This extra information
// when type checking the function body means that the
// `record.field` access syntax can be used, and improves error
// messages.
(
Type::Fn {
args: expected_arguments,
ret: _,
alias: _,
},
UntypedExpr::Fn {
arguments,
body,
return_annotation,
location,
fn_style,
},
) if fn_style != FnStyle::Capture && expected_arguments.len() == arguments.len() => {
self.infer_fn(
arguments,
expected_arguments,
*body,
false,
return_annotation,
location,
)
}
// Otherwise just perform normal type inference.
(_, value) => self.infer(value),
}?;
self.unify(tipo.clone(), value.tipo(), value.location(), tipo.is_data())?;
Ok(value)
}
fn infer_clause(
&mut self,
clause: UntypedClause,
subject: &Type,
) -> Result<Vec<TypedClause>, Error> {
let UntypedClause {
patterns,
then,
location,
} = clause;
let (then, typed_patterns) = self.in_new_scope(|scope| {
let typed_patterns = scope.infer_clause_pattern(patterns, subject, &location)?;
assert_no_assignment(&then)?;
let then = scope.infer(then)?;
Ok::<_, Error>((then, typed_patterns))
})?;
Ok(typed_patterns
.into_iter()
.map(|pattern| TypedClause {
location,
pattern,
then: then.clone(),
})
.collect())
}
fn infer_clause_pattern(
&mut self,
patterns: Vec1<UntypedPattern>,
subject: &Type,
location: &Span,
) -> Result<Vec<TypedPattern>, Error> {
let mut pattern_typer = PatternTyper::new(self.environment, &self.hydrator);
let mut typed_patterns = Vec::with_capacity(patterns.len());
for (ix, pattern) in patterns.into_iter().enumerate() {
if ix == 0 {
typed_patterns.push(pattern_typer.infer_pattern(pattern, subject)?);
} else {
typed_patterns
.push(pattern_typer.infer_alternative_pattern(pattern, subject, location)?);
}
}
Ok(typed_patterns)
}
// TODO: extract the type annotation checking into a infer_module_const
// function that uses this function internally
pub fn infer_const(
&mut self,
annotation: &Option<Annotation>,
value: Constant,
) -> Result<Constant, Error> {
let inferred = match value {
Constant::Int {
location,
value,
base,
} => Ok(Constant::Int {
location,
value,
base,
}),
Constant::String { location, value } => Ok(Constant::String { location, value }),
Constant::ByteArray {
location,
bytes,
preferred_format,
} => {
let _ = self.infer_bytearray(bytes.clone(), preferred_format, location)?;
Ok(Constant::ByteArray {
location,
bytes,
preferred_format,
})
}
Constant::CurvePoint {
location,
point,
preferred_format,
} => Ok(Constant::CurvePoint {
location,
point,
preferred_format,
}),
}?;
// Check type annotation is accurate.
if let Some(ann) = annotation {
let const_ann = self.type_from_annotation(ann)?;
self.unify(
const_ann.clone(),
inferred.tipo(),
inferred.location(),
const_ann.is_data(),
)?;
};
Ok(inferred)
}
fn infer_if(
&mut self,
branches: Vec1<UntypedIfBranch>,
final_else: UntypedExpr,
location: Span,
) -> Result<TypedExpr, Error> {
let mut branches = branches.into_iter();
let first = branches.next().unwrap();
let first_typed_if_branch = self.infer_if_branch(first)?;
let first_body_type = first_typed_if_branch.body.tipo();
let mut typed_branches = vec1::vec1![first_typed_if_branch];
for branch in branches {
let typed_branch = self.infer_if_branch(branch)?;
self.unify(
first_body_type.clone(),
typed_branch.body.tipo(),
typed_branch.body.type_defining_location(),
false,
)?;
typed_branches.push(typed_branch);
}
assert_no_assignment(&final_else)?;
let typed_final_else = self.infer(final_else)?;
self.unify(
first_body_type.clone(),
typed_final_else.tipo(),
typed_final_else.type_defining_location(),
false,
)?;
Ok(TypedExpr::If {
location,
branches: typed_branches,
final_else: Box::new(typed_final_else),
tipo: first_body_type,
})
}
fn infer_if_branch(&mut self, branch: UntypedIfBranch) -> Result<TypedIfBranch, Error> {
let (condition, body, is) = match branch.is {
Some(is) => self.in_new_scope(|typer| {
let AssignmentPattern {
pattern,
annotation,
location,
} = is;
let TypedExpr::Assignment { value, pattern, .. } = typer.infer_assignment(
pattern,
branch.condition.clone(),
AssignmentKind::is(),
&annotation,
location,
)?
else {
unreachable!()
};
if !value.tipo().is_data() {
typer.environment.warnings.push(Warning::UseWhenInstead {
location: branch.condition.location().union(location),
})
}
assert_no_assignment(&branch.body)?;
let body = typer.infer(branch.body.clone())?;
Ok((*value, body, Some(pattern)))
})?,
None => {
let condition = self.infer(branch.condition.clone())?;
self.unify(
bool(),
condition.tipo(),
condition.type_defining_location(),
false,
)?;
assert_no_assignment(&branch.body)?;
let body = self.infer(branch.body.clone())?;
(condition, body, None)
}
};
Ok(TypedIfBranch {
body,
condition,
is,
location: branch.location,
})
}
pub fn infer_fn(
&mut self,
args: Vec<UntypedArg>,
expected_args: &[Rc<Type>],
body: UntypedExpr,
is_capture: bool,
return_annotation: Option<Annotation>,
location: Span,
) -> Result<TypedExpr, Error> {
let (args, body, return_type) =
self.do_infer_fn(args, expected_args, body, &return_annotation)?;
let args_types = args.iter().map(|a| a.tipo.clone()).collect();
let tipo = function(args_types, return_type);
Ok(TypedExpr::Fn {
location,
tipo,
is_capture,
args,
body: Box::new(body),
return_annotation,
})
}
pub fn infer_fn_with_known_types(
&mut self,
args: Vec<TypedArg>,
body: UntypedExpr,
return_type: Option<Rc<Type>>,
) -> Result<(Vec<TypedArg>, TypedExpr, Rc<Type>), Error> {
assert_no_assignment(&body)?;
let (body_rigid_names, body_infer) = self.in_new_scope(|body_typer| {
let mut argument_names = HashMap::with_capacity(args.len());
for arg in &args {
match &arg.arg_name {
ArgName::Named { name, location, .. } if !arg.is_validator_param => {
if let Some(duplicate_location) = argument_names.insert(name, location) {
return Err(Error::DuplicateArgument {
location: *location,
duplicate_location: *duplicate_location,
label: name.to_string(),
});
}
body_typer.environment.insert_variable(
name.to_string(),
ValueConstructorVariant::LocalVariable {
location: arg.location,
},
arg.tipo.clone(),
);
body_typer.environment.init_usage(
name.to_string(),
EntityKind::Variable,
arg.location,
);
}
ArgName::Named { .. } | ArgName::Discarded { .. } => (),
};
}
Ok((body_typer.hydrator.rigid_names(), body_typer.infer(body)))
})?;
let body = body_infer.map_err(|e| e.with_unify_error_rigid_names(&body_rigid_names))?;
// Check that any return type is accurate.
let return_type = match return_type {
Some(return_type) => {
self.unify(
return_type.clone(),
body.tipo(),
body.type_defining_location(),
return_type.is_data(),
)
.map_err(|e| {
e.return_annotation_mismatch()
.with_unify_error_rigid_names(&body_rigid_names)
})?;
Type::with_alias(body.tipo(), return_type.alias())
}
None => body.tipo(),
};
// Ensure elements are serialisable to Data.
ensure_serialisable(true, return_type.clone(), body.type_defining_location())?;
Ok((args, body, return_type))
}
fn infer_uint(&mut self, value: String, location: Span) -> TypedExpr {
TypedExpr::UInt {
location,
value,
tipo: int(),
}
}
fn infer_list(
&mut self,
elements: Vec<UntypedExpr>,
tail: Option<Box<UntypedExpr>>,
location: Span,
) -> Result<TypedExpr, Error> {
let tipo = self.new_unbound_var();
let mut elems = Vec::new();
for elem in elements.into_iter() {
let element = self.infer(elem)?;
// Ensure they all have the same type
self.unify(tipo.clone(), element.tipo(), location, false)?;
elems.push(element)
}
// Ensure elements are serialisable to Data.
ensure_serialisable(false, tipo.clone(), location)?;
// Type check the ..tail, if there is one
let tipo = list(tipo);
let tail = match tail {
Some(tail) => {
let tail = self.infer(*tail)?;
// Ensure the tail has the same type as the preceding elements
self.unify(tipo.clone(), tail.tipo(), location, false)?;
Some(Box::new(tail))
}
None => None,
};
Ok(TypedExpr::List {
location,
tipo,
elements: elems,
tail,
})
}
fn infer_logical_op_chain(
&mut self,
kind: LogicalOpChainKind,
expressions: Vec<UntypedExpr>,
location: Span,
) -> Result<TypedExpr, Error> {
let mut typed_expressions = vec![];
for expression in expressions {
assert_no_assignment(&expression)?;
let typed_expression = self.infer(expression)?;
self.unify(
bool(),
typed_expression.tipo(),
typed_expression.location(),
false,
)?;
typed_expressions.push(typed_expression);
}
if typed_expressions.len() < 2 {
return Err(Error::LogicalOpChainMissingExpr {
op: kind,
location,
missing: 2 - typed_expressions.len() as u8,
});
}
let name: BinOp = kind.into();
let chain = typed_expressions
.into_iter()
.rev()
.reduce(|acc, typed_expression| TypedExpr::BinOp {
location,
tipo: bool(),
name,
left: typed_expression.into(),
right: acc.into(),
})
.expect("should have at least two");
Ok(chain)
}
fn infer_pipeline(&mut self, expressions: Vec1<UntypedExpr>) -> Result<TypedExpr, Error> {
PipeTyper::infer(self, expressions)
}
fn backpass(
&mut self,
breakpoint: UntypedExpr,
mut continuation: Vec<UntypedExpr>,
) -> UntypedExpr {
let UntypedExpr::Assignment {
location: _,
value,
kind,
patterns,
} = breakpoint
else {
unreachable!("backpass misuse: breakpoint isn't an Assignment ?!");
};
let value_location = value.location();
let call_location = Span {
start: value_location.end,
end: continuation
.last()
.map(|expr| expr.location().end)
.unwrap_or_else(|| value_location.end),
};
let mut names = Vec::new();
for (index, assignment_pattern) in patterns.into_iter().enumerate() {
let AssignmentPattern {
pattern,
annotation,
location: assignment_pattern_location,
} = assignment_pattern;
// In case where we have a Pattern that isn't simply a let-binding to a name, we do insert an extra let-binding
// in front of the continuation sequence. This is because we do not support patterns in function argument
// (which is perhaps something we should support?).
match pattern {
Pattern::Var {
name,
location: var_location,
} if kind.is_let() => {
let name = ArgName::Named {
label: name.clone(),
name,
location: var_location,
};
names.push((name, assignment_pattern_location, annotation));
}
Pattern::Discard {
name,
location: var_location,
} if kind.is_let() => {
let name = ArgName::Discarded {
label: name.clone(),
name,
location: var_location,
};
names.push((name, assignment_pattern_location, annotation));
}
_ => {
let name = format!("{}_{}", ast::BACKPASS_VARIABLE, index);
let arg_name = ArgName::Named {
label: name.clone(),
name: name.clone(),
location: pattern.location(),
};
let pattern_is_var = pattern.is_var();
continuation.insert(
0,
UntypedExpr::Assignment {
location: assignment_pattern_location,
value: UntypedExpr::Var {
location: assignment_pattern_location,
name: name.clone(),
}
.into(),
patterns: AssignmentPattern::new(
pattern,
annotation.clone(),
assignment_pattern_location,
)
.into(),
// erase backpassing while preserving assignment kind.
kind: match kind {
AssignmentKind::Is => unreachable!(),
AssignmentKind::Let { .. } => AssignmentKind::let_(),
AssignmentKind::Expect { .. }
if pattern_is_var && annotation.is_none() =>
{
AssignmentKind::let_()
}
AssignmentKind::Expect { .. } => AssignmentKind::expect(),
},
},
);
names.push((arg_name, assignment_pattern_location, annotation));
}
}
}
match *value {
UntypedExpr::Call {
fun,
arguments,
location: _,
} => {
let mut new_arguments = Vec::new();
new_arguments.extend(arguments);
new_arguments.push(CallArg {
location: call_location,
label: None,
value: UntypedExpr::lambda(names, continuation, call_location),
});
UntypedExpr::Call {
location: call_location,
fun,
arguments: new_arguments,
}
}
// This typically occurs on function captures. We do not try to assert anything on the
// length of the arguments here. We defer that to the rest of the type-checker. The
// only thing we have to do is rewrite the AST as-if someone had passed a callback.
//
// Now, whether this leads to an invalid call usage, that's not *our* immediate
// problem.
UntypedExpr::Fn {
fn_style,
ref arguments,
ref return_annotation,
location: _,
body: _,
} => {
let return_annotation = return_annotation.clone();
let arguments = arguments.iter().skip(1).cloned().collect::<Vec<_>>();
let call = UntypedExpr::Call {
location: call_location,
fun: value,
arguments: vec![CallArg {
location: call_location,
label: None,
value: UntypedExpr::lambda(names, continuation, call_location),
}],
};
if arguments.is_empty() {
call
} else {
UntypedExpr::Fn {
location: call_location,
fn_style,
arguments,
body: call.into(),
return_annotation,
}
}
}
// Similarly to function captures, if we have any other expression we simply call it
// with our continuation. If the expression isn't callable? No problem, the
// type-checker will catch that eventually in exactly the same way as if the code was
// written like that to begin with.
_ => UntypedExpr::Call {
location: call_location,
fun: value,
arguments: vec![CallArg {
location: call_location,
label: None,
value: UntypedExpr::lambda(names, continuation, call_location),
}],
},
}
}
fn infer_seq(&mut self, location: Span, untyped: Vec<UntypedExpr>) -> Result<TypedExpr, Error> {
// Search for backpassing.
let mut breakpoint = None;
let mut prefix = Vec::with_capacity(untyped.len());
let mut suffix = Vec::with_capacity(untyped.len());
for expression in untyped.into_iter() {
if breakpoint.is_some() {
suffix.push(expression);
} else {
match expression {
UntypedExpr::Assignment { kind, .. } if kind.is_backpassing() => {
breakpoint = Some(expression);
}
UntypedExpr::Assignment {
patterns,
location,
value: _,
kind: _,
} if patterns.len() > 1 => {
return Err(Error::UnexpectedMultiPatternAssignment {
arrow: patterns
.last()
.pattern
.location()
.map(|_, c_end| (c_end + 1, c_end + 1)),
location: patterns[1..]
.iter()
.map(|ap| ap.pattern.location())
.reduce(|acc, loc| acc.union(loc))
.unwrap_or(location),
});
}
_ => prefix.push(expression),
}
}
}
if let Some(breakpoint) = breakpoint {
prefix.push(self.backpass(breakpoint, suffix));
return self.infer_seq(location, prefix);
}
let sequence = self.in_new_scope(|scope| {
let count = prefix.len();
let mut expressions = Vec::with_capacity(count);
for (i, expression) in prefix.into_iter().enumerate() {
let no_assignment = assert_no_assignment(&expression);
let typed_expression = scope.infer(expression)?;
expressions.push(match i.cmp(&(count - 1)) {
// When the expression is the last in a sequence, we enforce it is NOT
// an assignment (kind of treat assignments like statements).
Ordering::Equal => {
no_assignment?;
typed_expression
}
// This isn't the final expression in the sequence, so it *must*
// be a let-binding; we do not allow anything else.
Ordering::Less => assert_assignment(typed_expression)?,
// Can't actually happen
Ordering::Greater => typed_expression,
})
}
Ok(expressions)
})?;
let unused = self
.environment
.warnings
.iter()
.filter_map(|w| match w {
Warning::UnusedVariable { location, .. }
| Warning::DiscardedLetAssignment { location, .. } => Some(*location),
_ => None,
})
.collect::<Vec<_>>();
let expressions = sequence
.into_iter()
.filter(|expr| {
if let TypedExpr::Assignment { pattern, .. } = expr {
!unused.contains(&pattern.location())
} else {
true
}
})
.collect::<Vec<_>>();
Ok(TypedExpr::Sequence {
location,
expressions,
})
}
fn infer_string(&mut self, value: String, location: Span) -> TypedExpr {
TypedExpr::String {
location,
value,
tipo: string(),
}
}
fn infer_pair(
&mut self,
fst: UntypedExpr,
snd: UntypedExpr,
location: Span,
) -> Result<TypedExpr, Error> {
let typed_fst = self.infer(fst)?;
ensure_serialisable(false, typed_fst.tipo(), location)?;
let typed_snd = self.infer(snd)?;
ensure_serialisable(false, typed_snd.tipo(), location)?;
Ok(TypedExpr::Pair {
location,
tipo: pair(typed_fst.tipo(), typed_snd.tipo()),
fst: typed_fst.into(),
snd: typed_snd.into(),
})
}
fn infer_tuple(&mut self, elems: Vec<UntypedExpr>, location: Span) -> Result<TypedExpr, Error> {
let mut typed_elems = vec![];
for elem in elems {
let typed_elem = self.infer(elem)?;
// Ensure elements are serialisable to Data.
ensure_serialisable(false, typed_elem.tipo(), location)?;
typed_elems.push(typed_elem);
}
let tipo = tuple(typed_elems.iter().map(|e| e.tipo()).collect());
Ok(TypedExpr::Tuple {
location,
elems: typed_elems,
tipo,
})
}
fn infer_tuple_index(
&mut self,
tuple_or_pair: UntypedExpr,
index: usize,
location: Span,
) -> Result<TypedExpr, Error> {
let tuple_or_pair = self.infer(tuple_or_pair)?;
let tipo = match *collapse_links(tuple_or_pair.tipo()) {
Type::Tuple {
ref elems,
alias: _,
} => {
let size = elems.len();
if index >= size {
Err(Error::TupleIndexOutOfBound {
location,
index,
size,
})
} else {
Ok(elems[index].clone())
}
}
Type::Pair {
ref fst,
ref snd,
alias: _,
} => {
if index == 0 {
Ok(fst.clone())
} else if index == 1 {
Ok(snd.clone())
} else {
Err(Error::PairIndexOutOfBound { location, index })
}
}
_ => Err(Error::NotIndexable {
location,
tipo: tuple_or_pair.tipo(),
}),
}?;
Ok(TypedExpr::TupleIndex {
location,
tipo,
index,
tuple: Box::new(tuple_or_pair),
})
}
fn infer_error_term(&mut self, location: Span) -> TypedExpr {
let tipo = self.new_unbound_var();
TypedExpr::ErrorTerm { location, tipo }
}
fn infer_trace_arg(&mut self, arg: UntypedExpr) -> Result<TypedExpr, Error> {
let typed_arg = self.infer(arg)?;
match self.unify(string(), typed_arg.tipo(), typed_arg.location(), false) {
Err(_) => {
self.unify(data(), typed_arg.tipo(), typed_arg.location(), true)?;
Ok(diagnose_expr(typed_arg))
}
Ok(()) => Ok(typed_arg),
}
}
fn infer_trace(
&mut self,
kind: TraceKind,
then: UntypedExpr,
location: Span,
label: UntypedExpr,
arguments: Vec<UntypedExpr>,
) -> Result<TypedExpr, Error> {
let typed_arguments = arguments
.into_iter()
.map(|arg| self.infer_trace_arg(arg))
.collect::<Result<Vec<_>, Error>>()?;
let then = self.infer(then)?;
let tipo = then.tipo();
if let TraceKind::Todo = kind {
self.environment.warnings.push(Warning::Todo {
location,
tipo: tipo.clone(),
})
}
match self.tracing.trace_level(false) {
TraceLevel::Silent => Ok(then),
TraceLevel::Compact => {
let text = self.infer(label)?;
self.unify(string(), text.tipo(), text.location(), false)?;
Ok(TypedExpr::Trace {
location,
tipo,
then: Box::new(then),
text: Box::new(text),
})
}
TraceLevel::Verbose => {
let label = self.infer_trace_arg(label)?;
let text = if typed_arguments.is_empty() {
label
} else {
let delimiter = |ix| TypedExpr::String {
location: Span::empty(),
tipo: string(),
value: if ix == 0 { ": " } else { ", " }.to_string(),
};
typed_arguments
.into_iter()
.enumerate()
.fold(label, |text, (ix, arg)| {
append_string_expr(append_string_expr(text, delimiter(ix)), arg)
})
};
Ok(TypedExpr::Trace {
location,
tipo,
then: Box::new(then),
text: Box::new(text),
})
}
}
}
pub fn infer_value_constructor(
&mut self,
module: &Option<String>,
name: &str,
location: &Span,
) -> Result<ValueConstructor, Error> {
let constructor = match module {
// Look in the current scope for a binding with this name
None => {
let constructor =
self.environment
.get_variable(name)
.cloned()
.ok_or_else(|| Error::UnknownVariable {
location: *location,
name: name.to_string(),
variables: self.environment.local_value_names(),
})?;
if let ValueConstructorVariant::ModuleFn { name: fn_name, .. } =
&constructor.variant
{
// Note whether we are using an ungeneralised function so that we can
// tell if it is safe to generalise this function after inference has
// completed.
let is_ungeneralised = self.environment.ungeneralised_functions.contains(name);
self.ungeneralised_function_used =
self.ungeneralised_function_used || is_ungeneralised;
// In case we use another function, infer it first before going further.
// This ensures we have as much information possible about the function
// when we start inferring expressions using it (i.e. calls).
//
// In a way, this achieves a cheap topological processing of definitions
// where we infer used definitions first. And as a consequence, it solves
// issues where expressions would be wrongly assigned generic variables
// from other definitions.
if let Some(fun) = self.environment.module_functions.remove(fn_name) {
// NOTE: Recursive functions should not run into this multiple time.
// If we have no hydrator for this function, it means that we have already
// encountered it.
if self.not_yet_inferred.contains(&fun.name) {
return Err(Error::MustInferFirst {
function: fun.clone(),
location: *location,
});
}
}
}
// Register the value as seen for detection of unused values
self.environment.increment_usage(name);
constructor
}
// Look in an imported module for a binding with this name
Some(module_name) => {
let (_, module) = &self
.environment
.imported_modules
.get(module_name)
.ok_or_else(|| Error::UnknownModule {
location: *location,
name: module_name.to_string(),
known_modules: self
.environment
.importable_modules
.keys()
.map(|t| t.to_string())
.collect(),
})?;
module
.values
.get(name)
.cloned()
.ok_or_else(|| Error::UnknownModuleValue {
location: *location,
module_name: module_name.to_string(),
name: name.to_string(),
value_constructors: module.values.keys().map(|t| t.to_string()).collect(),
})?
}
};
let ValueConstructor {
public,
variant,
tipo,
} = constructor;
// Instantiate generic variables into unbound variables for this usage
let tipo = self.instantiate(tipo, &mut HashMap::new(), *location)?;
Ok(ValueConstructor {
public,
variant,
tipo,
})
}
fn infer_var(&mut self, name: String, location: Span) -> Result<TypedExpr, Error> {
let constructor = self.infer_value_constructor(&None, &name, &location)?;
Ok(TypedExpr::Var {
constructor,
location,
name,
})
}
fn infer_when(
&mut self,
subject: UntypedExpr,
clauses: Vec<UntypedClause>,
location: Span,
) -> Result<TypedExpr, Error> {
// if there is only one clause we want to present a warning
// that suggests that a `let` binding should be used instead.
let mut sample = None;
if clauses.len() == 1 && clauses[0].patterns.len() == 1 {
sample = Some(Warning::SingleWhenClause {
location: clauses[0].patterns[0].location(),
sample: UntypedExpr::Assignment {
location: Span::empty(),
value: Box::new(subject.clone()),
patterns: AssignmentPattern::new(
clauses[0].patterns[0].clone(),
None,
Span::empty(),
)
.into(),
kind: AssignmentKind::let_(),
},
});
}
let typed_subject = self.infer(subject)?;
let subject_type = typed_subject.tipo();
let return_type = self.new_unbound_var();
let mut typed_clauses = Vec::new();
for clause in clauses {
for typed_clause in self.infer_clause(clause, &subject_type)? {
self.unify(
return_type.clone(),
typed_clause.then.tipo(),
typed_clause.location(),
false,
)
.map_err(|e| e.case_clause_mismatch())?;
typed_clauses.push(typed_clause)
}
}
self.check_when_exhaustiveness(&typed_clauses, location)?;
if let Some(sample) = sample {
self.environment.warnings.push(sample);
}
Ok(TypedExpr::When {
location,
tipo: return_type,
subject: Box::new(typed_subject),
clauses: typed_clauses,
})
}
fn instantiate(
&mut self,
t: Rc<Type>,
ids: &mut HashMap<u64, Rc<Type>>,
location: Span,
) -> Result<Rc<Type>, Error> {
let result = self.environment.instantiate(t, ids, &self.hydrator);
ensure_serialisable(true, result.clone(), location)?;
Ok(result)
}
pub fn new_unbound_var(&mut self) -> Rc<Type> {
self.environment.new_unbound_var()
}
pub fn type_from_annotation(&mut self, annotation: &Annotation) -> Result<Rc<Type>, Error> {
self.hydrator
.type_from_annotation(annotation, self.environment)
}
fn unify(
&mut self,
t1: Rc<Type>,
t2: Rc<Type>,
location: Span,
allow_cast: bool,
) -> Result<(), Error> {
self.environment.unify(t1, t2, location, allow_cast)
}
}
fn assert_no_assignment(expr: &UntypedExpr) -> Result<(), Error> {
match expr {
UntypedExpr::Assignment { value, .. } => Err(Error::LastExpressionIsAssignment {
location: expr.location(),
expr: *value.clone(),
}),
UntypedExpr::Trace { then, .. } => assert_no_assignment(then),
UntypedExpr::Fn { .. }
| UntypedExpr::BinOp { .. }
| UntypedExpr::ByteArray { .. }
| UntypedExpr::Call { .. }
| UntypedExpr::ErrorTerm { .. }
| UntypedExpr::FieldAccess { .. }
| UntypedExpr::If { .. }
| UntypedExpr::UInt { .. }
| UntypedExpr::List { .. }
| UntypedExpr::PipeLine { .. }
| UntypedExpr::RecordUpdate { .. }
| UntypedExpr::Sequence { .. }
| UntypedExpr::String { .. }
| UntypedExpr::Tuple { .. }
| UntypedExpr::Pair { .. }
| UntypedExpr::TupleIndex { .. }
| UntypedExpr::UnOp { .. }
| UntypedExpr::Var { .. }
| UntypedExpr::LogicalOpChain { .. }
| UntypedExpr::TraceIfFalse { .. }
| UntypedExpr::When { .. }
| UntypedExpr::CurvePoint { .. } => Ok(()),
}
}
fn assert_assignment(expr: TypedExpr) -> Result<TypedExpr, Error> {
if !matches!(expr, TypedExpr::Assignment { .. }) {
if expr.tipo().is_void() {
return Ok(TypedExpr::Assignment {
location: expr.location(),
tipo: void(),
value: expr.clone().into(),
pattern: Pattern::Constructor {
is_record: false,
location: expr.location(),
name: "Void".to_string(),
constructor: PatternConstructor::Record {
name: "Void".to_string(),
field_map: None,
},
arguments: vec![],
module: None,
spread_location: None,
tipo: void(),
},
kind: AssignmentKind::let_(),
});
}
return Err(Error::ImplicitlyDiscardedExpression {
location: expr.location(),
});
}
Ok(expr)
}
pub fn ensure_serialisable(is_top_level: bool, t: Rc<Type>, location: Span) -> Result<(), Error> {
match t.deref() {
Type::App {
args,
name: _,
module: _,
public: _,
contains_opaque: _,
alias: _,
} => {
if !is_top_level && t.is_ml_result() {
return Err(Error::IllegalTypeInData {
tipo: t.clone(),
location,
});
}
args.iter()
.map(|e| ensure_serialisable(false, e.clone(), location))
.collect::<Result<Vec<_>, _>>()?;
Ok(())
}
Type::Tuple { elems, alias: _ } => {
elems
.iter()
.map(|e| ensure_serialisable(false, e.clone(), location))
.collect::<Result<Vec<_>, _>>()?;
Ok(())
}
Type::Fn {
args,
ret,
alias: _,
} => {
if !is_top_level {
return Err(Error::IllegalTypeInData {
tipo: t.clone(),
location,
});
}
args.iter()
.map(|e| ensure_serialisable(true, e.clone(), location))
.collect::<Result<Vec<_>, _>>()?;
ensure_serialisable(true, ret.clone(), location)
}
Type::Var { tipo, alias } => match tipo.borrow().deref() {
TypeVar::Unbound { .. } => Ok(()),
TypeVar::Generic { .. } => Ok(()),
TypeVar::Link { tipo } => ensure_serialisable(
is_top_level,
Type::with_alias(tipo.clone(), alias.clone()),
location,
),
},
Type::Pair { fst, snd, .. } => {
ensure_serialisable(false, fst.clone(), location)?;
ensure_serialisable(false, snd.clone(), location)
}
}
}
fn diagnose_expr(expr: TypedExpr) -> TypedExpr {
// NOTE: The IdGenerator is unused. See similar note in 'append_string_expr'
let decode_utf8_constructor =
from_default_function(DefaultFunction::DecodeUtf8, &IdGenerator::new());
let decode_utf8 = TypedExpr::ModuleSelect {
location: expr.location(),
tipo: decode_utf8_constructor.tipo.clone(),
label: DefaultFunction::DecodeUtf8.aiken_name(),
module_name: BUILTIN.to_string(),
module_alias: BUILTIN.to_string(),
constructor: decode_utf8_constructor.variant.to_module_value_constructor(
decode_utf8_constructor.tipo,
BUILTIN,
&DefaultFunction::AppendString.aiken_name(),
),
};
let diagnostic = TypedExpr::Var {
location: expr.location(),
name: "diagnostic".to_string(),
constructor: ValueConstructor {
public: true,
tipo: function(vec![data(), byte_array()], byte_array()),
variant: ValueConstructorVariant::ModuleFn {
name: "diagnostic".to_string(),
field_map: None,
module: "".to_string(),
arity: 2,
location: Span::empty(),
builtin: None,
},
},
};
let location = expr.location();
TypedExpr::Call {
tipo: string(),
fun: Box::new(decode_utf8.clone()),
args: vec![CallArg {
label: None,
location: expr.location(),
value: TypedExpr::Call {
tipo: byte_array(),
fun: Box::new(diagnostic.clone()),
args: vec![
CallArg {
label: None,
value: expr,
location,
},
CallArg {
label: None,
location,
value: TypedExpr::ByteArray {
tipo: byte_array(),
bytes: vec![],
location,
},
},
],
location,
},
}],
location,
}
}
fn append_string_expr(left: TypedExpr, right: TypedExpr) -> TypedExpr {
// NOTE: The IdGenerator is unused here, as it's only necessary for generic builtin
// functions such as if_then_else or head_list. However, if such functions were needed,
// passing a brand new IdGenerator here would be WRONG and cause issues down the line.
//
// So this is merely a small work-around for convenience. The proper way here would be to
// pull the function definition for append_string from the pre-registered builtins
// functions somewhere in the environment.
let value_constructor =
from_default_function(DefaultFunction::AppendString, &IdGenerator::new());
let append_string = TypedExpr::ModuleSelect {
location: Span::empty(),
tipo: value_constructor.tipo.clone(),
label: DefaultFunction::AppendString.aiken_name(),
module_name: BUILTIN.to_string(),
module_alias: BUILTIN.to_string(),
constructor: value_constructor.variant.to_module_value_constructor(
value_constructor.tipo,
BUILTIN,
&DefaultFunction::AppendString.aiken_name(),
),
};
TypedExpr::Call {
location: Span::empty(),
tipo: string(),
fun: Box::new(append_string.clone()),
args: vec![
CallArg {
label: None,
location: left.location(),
value: left,
},
CallArg {
label: None,
location: right.location(),
value: right,
},
],
}
}